http://www.itjxue.com  1970-01-01 08:00  来源:  点击次数: 

逻辑回归怎么设置参照

加入一个虚拟变量,并对其进行分别赋值 。回归分析的时候把这个虚拟变量一并纳入变量进行分析。

拓展资料:logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。自变量既可以是连续的,也可以是分类的。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。

以上资料来源于网络。网页链接

逻辑回归和判别分析的区别

logistic回归与判别分析

wlj1107

回答于 2017-10-16

一.logistic回归

1.理论介绍

(1)logistic回归的引入

是一个二分类的监督学习方法,在二分类中,为什么弃用传统的线性回归模型,改用logistic回归?

原因有两点:

(1)二分类取值范围是[0,1],而普通线性回归的范围是实数集;

(2)实际中很多问题,输入与输出之间的关系并不是线性关系,即可能更多的是x取值很小或很大对因变量影响不大,但是当自变量取中间值的时候对因变量影响比较大。

(2)logistic回归模型的实现

sigmoid函数是一条S形曲线,特点就是当输入很小或很大时,输出变化不明显,但是对于在输入取值在范围是中间的时候,变化很大,这符合 很多实际问题,且取值范围是0到1之间。

将自变量的线性函数的和带入sigmoid函数,即可使因变量y映射到[0,1]区间范围上,即将自变量的线性函数转化为概率,输入的线性函数越接近于正无穷,概率值越接近于1,输入的线性函数的值越接近于负无穷,概率值越接近于0,这就是logistic模型。

接下来就需要对logistic模型进行求解,即求出各个特征的回归系数。

逻辑回归模型的校准性

曲线。逻辑回归是广义线性模型,逻辑回归具有较好的泛化性和可解释性。校准性是曲线,逻辑回归模型是一种分类模型,也是线性模型的一种。实质上是线性回归+sigmod函数组成。

机器学习常见算法优缺点之逻辑回归

我们在学习机器学习的时候自然会涉及到很多算法,而这些算法都是能够帮助我们处理更多的问题。其中,逻辑回归是机器学习中一个常见的算法,在这篇文章中我们给大家介绍一下关于逻辑回归的优缺点,大家有兴趣的一定要好好阅读哟。

首先我们给大家介绍一下逻辑回归的相关知识,逻辑回归的英文就是Logistic Regression。一般来说,逻辑回归属于判别式模型,同时伴有很多模型正则化的方法,具体有L0, L1,L2,etc等等,当然我们没有必要像在用朴素贝叶斯那样担心我的特征是否相关。这种算法与决策树、SVM相比,我们还会得到一个不错的概率解释,当然,我们还可以轻松地利用新数据来更新模型,比如说使用在线梯度下降算法-online gradient descent。如果我们需要一个概率架构,比如说,简单地调节分类阈值,指明不确定性,或者是要获得置信区间,或者我们希望以后将更多的训练数据快速整合到模型中去,我们可以使用这个这个算法。

那么逻辑回归算法的优点是什么呢?其实逻辑回归的优点具体体现在5点,第一就是实现简单,广泛的应用于工业问题上。第二就是分类时计算量非常小,速度很快,存储资源低。第三就是便利的观测样本概率分数。第四就是对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题。第五就是计算代价不高,易于理解和实现。

当然,逻辑回归的缺点也是十分明显的,同样,具体体现在五点,第一就是当特征空间很大时,逻辑回归的性能不是很好。第二就是容易欠拟合,一般准确度不太高。第三就是不能很好地处理大量多类特征或变量。第四个缺点就是只能处理两分类问题,且必须线性可分。第五个缺点就是对于非线性特征,需要进行转换。

那么逻辑回归应用领域都有哪些呢?逻辑回归的应用领域还是比较广泛的,比如说逻辑回归可以用于二分类领域,可以得出概率值,适用于根据分类概率排名的领域,如搜索排名等、逻辑回归的扩展softmax可以应用于多分类领域,如手写字识别等。当然,在信用评估也有逻辑回归的使用,同时逻辑回归可以测量市场营销的成功度。当然,也可以预测某个产品的收益。最后一个功能比较有意思,那就是可以预定特定的某天是否会发生地震。

我们在这篇文章中给大家介绍了关于机器学习中逻辑回归算法的相关知识,从中我们具体为大家介绍了逻辑回归算法的优缺点以及应用领域。相信大家能够通过这篇文章能够更好的理解逻辑回归算法。

(责任编辑:IT教学网)

更多
上一篇:没有了

推荐CSS教程文章