python画图matplotlib(python画图matplotlib如何设置坐标轴标签
python用matplotlib绘图时,曲线或散点怎么删除?
在matplotlib中,每一个对象(图标,轴等)都提供了各种方法来获取其属性或者之类对象。\x0d\x0a如,最大的Artist容器是matplotlib.figure.Figure,它包括组成图表的所有元素。图表的背景是一个Rectangle对象,用Figure.patch属性表示。当你通过调用add_subplot或者add_axes方法往图表中添加轴(子图时),这些子图都将添加到Figure.axes属性中,同时这两个方法也返回添加进axes属性的对象,注意返回值的类型有所不同,实际上AxesSubplot是Axes的子类。\x0d\x0a\x0d\x0afig = plt.figure()\x0d\x0aax = fig.add_subplot(1,1,1)\x0d\x0a然后我们添加一条“Line”到这个“axes”中去\x0d\x0alines = ax.plot(np.arange(1000))\x0d\x0a\x0d\x0a此时,你可以运行fig.show()查看到图表对象中已经多了一条线\x0d\x0a\x0d\x0a当然,你也可以吧lines对象的位置打印出来,我这里是:\x0d\x0a[]\x0d\x0a\x0d\x0aOK,可能这个时候你已经知道如何做了,通过查询API我们知道是有一个POP方法的,那么你可能会这么写:\x0d\x0alines.pop(0)\x0d\x0a然后你会再次运行程序,你会发现画的先仍然存在,为什么呢?\x0d\x0a好吧,其实这个地方你可以理解为是一个值传递,而非引用删除,那么正确的方法是:\x0d\x0aax.lines.pop(0)\x0d\x0a\x0d\x0a你同样可以这样,传递一个地址过去\x0d\x0aax.lines.remove(lines[0])\x0d\x0a\x0d\x0a你大概可能通过这些方法进行删除\x0d\x0alines.pop(0) \x0d\x0alines.remove()\x0d\x0adel lines\x0d\x0a\x0d\x0a回答完毕。
Python Matplotlib画图
主要用于作图、可视化问题
pip install matplotlib
导入模块 pyplot 和 pylab ,可以参考下面链接观察两者区别:
(说白了就是pylay=pyplot+numpy)
输入这三行解决
主要使用 plot() 来展示,里面前两个参数代表 x , y 坐标(注意x,y数量要一样),第三个参数可以用来设置散点图( 'o' )或者颜色、线条形式等各种样式,并且第三个参数可以同时传入多个,比如要红色的散点图就: '0r'
(1)颜色样式:
(2)线条样式:
(3)点的样式:
(4)坐标区间:
或者分别设置x、y的区间:
注:
设置点的样式时默认就是散点图,以及同类样式只能设置一个(比如不能设置两种颜色),并且还可以把多个图集合在一起展示,那就多 plot 几个,plot就相当于一个画布,每plot一个就相当于在上面画一张图,再弄就继续在上面画
主要用 hist() 来显示,实现方式很简单,把一组数据放入括号里就行了,例如随机生成一堆正态分布的数,然后直方图显示:
其中如果要设置直方图格式(宽度、上下限、是否要轮廓)可以这样:
注:
直方图和折线图这些不太一样,折线图是传入两个等长数据,然后每个x、y坐标一一对应展示出来。而直方图是:第一个参数代表你传入的所有数据,第二个参数代表你传入的x轴范围,然后直方图会将第一个参数里传入的数据一个个计算在某个范围内含有的数据量,因此传入的两个参数数据不一定要等长,例如下面的例子:
结果如图:
可以看出数据被自动分配到对应的范围内上了
使用 subplot(row, col, area) :三个参数分别是行数、列数和区域,比如要将原图分成2行2列(切成4份),然后要左下角那个图就:
如果想4个图都显示就4个 subplot ,分别1、2、3、4就行了,然后在各图的subplot之后写的都是每个图的内容,现在我们试试弄一个2行,第一行两列的图片(想象下鼠标的样子),而且分别是不同的内容:
注:
labels 、 sizes 、 colors 和 explode 的长度都要一样
1.导入3D图相关模块:
2.将画图板加到3D模块里,然后加入数据即可:
3D散点图举例:
通过 imread() 读取,举例:
03_Python 使用Matplotlib绘图
不知不觉,已经进入第12周了,Python数据分析的学习现今也已经进入了中后期,在继上周进行了Numpy的康威生命游戏的编写之后;紧接着进行的学习就是利用Python的Matplotlib模块来练习绘图。 这次由于涉及到图像,所以引用了一些丁烨老师的pdf的截图。主要是进行用Matplotlib模块来进行MATLAB能做的数据分析绘图工作,并结合Numpy和Matplotlib来做一个扫雷小游戏。
matplotlib官网
Python数据可视化利器Matplotlib从入门到高级4
2D曲线绘制是Matplotlib绘图的最基本功能,也是用得最多、最重要的绘图功能之一,本文开始详细介绍Matplotlib 2D曲线绘图功能。我的介绍主要以面向对象的编码风格为主,但会在文章的末尾附上相应的pyplot风格的源代码,供大家查阅、对比。我们先看一段代码:
代码运行效果如下:
这个绘图中我们没有作任何设置,一切交给Matplotlib处理。我们只是看到了绘制出的曲线的样子。但这与我们所想要的效果可能差异较大。所以我们还需要对图形进行一些自定义。
不管我们想生成什么样的图形,在Matplotlib当中,大致都可以总结为三步:一是构造绘图用的数据(Matplotlib推荐numpy数据,本系列介绍Matplotlib绘图,暂不涉及numpy的相关内容,留待后续有空余时吧);二是根据数据的特点选择适当的绘图方法并绘制出数据的图形;第三步则是对绘制的图形进行自定义设置或者美化以达到满足我们获得精美的输出图形的要求。
在上面的绘图中,我们仅仅做到了第二步,下面我们来进行一些自定义,而Matplotlib为此提供了非常丰富的功能。
你可能最想先尝试一下换个颜色看看曲线是什么样的,这有很多种方法。首先,我们可以在绘制图形的时候直接指定它,我们把绘图的代码改成下面的样子:
这里的 ‘r’ 是 “red”的简写,表示将曲线的颜色指定为红色。也可以写成下面的样子,这样可读性更高:
plot 返回一个 Line2D 对象的列表,我们使用一个带有“ line1, ”的元组来解包,随后使用 set_color() 代码设置line1 曲线的颜色,请注意这里设置的颜色会覆盖 plot 绘图函数当中指定的颜色。上面三段代码各自独立运行之后的效果是一样的。如下:
为了提高效率,Matplotlib模仿MATLAB支持常用颜色的单字母代码缩写。
你还可以使用不区分大小写的十六进制 RGB 或 RGBA 字符串(如:'#0f0f0f'),或者不区分大小写的 X11/CSS4 颜色名称(如:'aquamarine'),以及来自 xkcd color survey 的不区分大小写的颜色名称(如:'xkcd:sky blue')等等。更为详细的颜色规范,你可以查阅官方文档。但对于Python办公而言,掌握这些应该已经足够了。
与曲线颜色一样,线型和线宽也有多种方式来指定:
这里我们最终指定的线宽为2.0磅,绘图函数当中指定的线宽被后续指定的属性值覆盖了。而线型在这里由set_linestyle()指定,其中“--”和“-.”都是Matplotlib中支持的线型,“--”表示虚线,而“-.”则是点划线。而Matplotlib默认的线型“-”实线,除此之外,Matplotlib还支持“:”点线。
我们绘制曲线之前构造的数据点在曲线上也可以标记出来,这些标记点有不同的风格。同样可以以不同的方式来设置它:
注意第一行代码当中的“r:o”字符串,它是一种简写形式,是将颜色、线型和标记点形状在一个字符串中同时设置的方式,其中的“r”表示红色,“:”表示点线,“o”表示标记点为大圆点。只有在颜色使用单字符代码时才可以像上面这样组合起来同时表示三个属性。默认情况下,标记点的颜色与线型颜色相同,但可以单独设置与曲线不同的颜色,不仅如此,标记点的边线颜色和中间填充颜色也都可以单独设置。上面第二行代码我们就使用set_markeredgecolor('b')将标记点边线颜色设置为了蓝色。与标记点设置相关的还有set_marker(设置标记点形状)、set_markeredgewidth(设置标记点边线宽度)、set_markerfacecolor(设置标记点中间的填充色)、set_markersize (设置标记点的大小)等。下面是我整理的Matplotlib支持的所有标记点形状。
本文先介绍到此,后续进一步介绍坐标轴、图例和网格线的设置。最后附上本文pyplot风格的绘图代码:
显然这种简单绘图pyplot风格要简洁一些,还是很有优势的。
Python实操:手把手教你用Matplotlib把数据画出来
作者:迈克尔·贝耶勒(Michael Beyeler)
如需转载请联系华章 科技
如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:
正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:
在本书中,plt接口会被频繁使用。
让我们创建第一个绘图。
假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:
可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:
你亲自尝试了吗?发生了什么吗?有没有什么东西出现?
实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:
1. 从.py脚本中绘图
如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:
在脚本末尾调用这个函数,你的绘图就会出现!
2. 从 IPython shell 中绘图
这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令。
接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。
3. 从 Jupyter Notebook 中绘图
如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:
在本书中,将会使用inline选项:
现在再次尝试一下:
上面的命令会得到下面的绘图输出结果:
如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。
为此,需要三个可视化工具:
那么开始引入这些包吧:
第一步是载入实际数据:
如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.TAB,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。
两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。
因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:
这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:
上面的命令得到下面的输出:
此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。
最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。
这会得到下面的输出结果:
关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。
本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。