python数据分析的流程论文(python数据分析论文报告)

http://www.itjxue.com  2023-04-10 13:54  来源:未知  点击次数: 

python数据挖掘技术及应用论文怎么写

python数据挖掘技术及应用论文选题如下:

1、基于关键词的文本知识的挖掘系统的设计与实现。

2、基于MapReduce的气候数据的分析。

3、基于概率图模型的蛋白质功能预测。

4、基于第三方库的人脸识别系统的设计与实现。

5、基于hbase搜索引擎的设计与实现。

6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。

7、客户潜在价值评估系统的设计与实现。

8、基于神经网络的文本分类的设计与实现。

如何用python进行数据分析

1、Python数据分析流程及学习路径

数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

相关推荐:《Python入门教程

2、利用Python读写数据

Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。

3、利用Python处理和计算数据

在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。

Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。

python如何做数据分析

用Python做数据分析,大致流程如下:

1、数据获取

可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sql server、mysql、orcale等主流数据库的接口包,比如pymssql、pymysql、cx_Oracle等。

2、数据存储

企业当中的数据存储,通过通过数据库如Mysql来存储与管理,对于非结构化数据的存储可以使用MongoDB等。对于使用Python进行网络抓取的数据,我们也可以使用pymysql包快速地将其存储到Mysql中去。

3、数据预处理/数据清洗

大多数情况下,原始数据是存在格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。Python做数据清洗,可以使用Numpy和Pandas这两个工具库。

4、数据建模与分析

常见的数据挖掘模型有:分类、聚类、回归等,这些常见的算法模型,Python也有Scikit-learn和Tensorflow工具库来支持。

5、数据可视化分析

在数据可视化方面,Python有Matplotlib、Seaborn、Pyecharts等工具库可用。

(责任编辑:IT教学网)

更多

推荐Access文章