python绘图入门教程(非常详细)(python绘图有什么用)
python入门教程(非常详细)
新手入门需要掌握编程环境的安装与使用、输入及输出语句的应用、运算表达式的使用等。
具体教程如下:
1、编程环境的安装与使用。比如Python的学习一般推荐软件自带的IDLE,简单好用。
2、掌握输入、输入语句的使用。输入语句可以让计算机知道你通过键盘输入了什么,输出语句可以让你知道计算机执行的结果。以输出语句为例:其中“”里面的内容是原样输出,多个输出项之间用,隔开。
3、掌握运算(包含计算、逻辑)表达式使用。这个主要是用+、-、*、/、()、、、=、=等符号连接起来的表示计算或者比较的式子,让计算机能做计算机或者判断。
4、特别要掌握赋值表达式的使用,这个主要是等于号的理解。在计算机编程语言里,等于号一般不表示相等,而是表示赋值。也就是将等号右边的内容记入左边的名字里。
5、理解并熟练使用变量,变量的字面意思就是会变化的量。其实质的作用记忆信息。通过给要记忆的内容取个名字,然后通过这个名字就可以找到记忆的内容。有点类似于数学中的字母表示数。
6、选择结构,这是让计算机具有一定的选择、判断能力的基础。比如我们常见的登录,VIP就要用到选择结构。
7、循环结构,这是让计算机具有重复的能力。前提是事件要具有一定的规律性,比如1,3,5,7,9……
8、文件的读取和写入,这个主要是针对大量的数据处理而言的。
一般来说,掌握以上内容就是入门了。
怎样用python画图,为什么代码写好运行时错误?
python绘图(可视化)的模块非常多,下面我简单介绍几个不错的绘图库,感兴趣的朋友可以自己尝试一下,实验环境win7+python3.6+pycharm5.0,主要内容如下:
matplotlib
这是python中专门用于绘图的一个模块,功能强大,制图种类繁多,使用也最广泛,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装matplotlib模块,这个直接在cmd窗口输入安装命令“pip install matplotlib”就行,如下:
2.安装完成后,我们就可以编写代码进行一下简单测试了,代码如下,一个稍微复杂的曲线图:
程序运行效果如下,看着还是非常不错的:
3.更多示例的话,可以参考一下官网教程,介绍的非常详细,柱状图、散点图、饼图等都有,非常适合初学者学习入门:
seaborn
这是一个基于matplotlib的绘图库,是matplotlib的高级封装,代码量更少,使用起来也更方便,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装seaborn模块,这个也直接输入安装命令“pip install seaborn”就行,如下,很快就能安装完成:
2.安装完成后,我们就可以直接编写代码来测试一下这个模块了,代码如下,一个折线图集合:
程序运行截图如下,效果也非常不错:
3.更多示例的话,也直接参考官网教程就行,介绍的非常详细,很适合初学者入门学习:
pyecharts
这是echarts的一个python接口,借助于echarts强大的可视化功能,python也可以快速构建、绘制各种各样的图表,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装pyecharts模块,这个也直接输入命令“pip install pyecharts”就行,如下:
2.安装完成后,我们就可以编写代码来进行下测试了,测试代码如下,一个简单的3D散点图:
程序运行截图如下(基于浏览器进行显示),效果还是非常不错的:
至此,我们就完成了利用python来进行绘图(可视化)。总的来说,这3个绘图模块使用起来都非常不错,对于大多数图表绘制来说,完全可以满足需求,当然,还有许多其他绘图模块,像ggplot等,也都非常不错,网上也有相关教程,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
python画图有很多扩展可以用,比如matplotlib、turtle、pychart等等,看你需要什么方面了,不同的需求需要用不同的工具。如果做界面还有pyqt、tkinter等等,做 游戏 还有pygame等等。
python报错需要查看报错信息,进行调试才能正常运行
python绘图中的四个绘图技巧
pre{overflow-x: auto}
技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import?seaborn?as?sns?#?v0.11.2?? import?matplotlib.pyplot?as?plt?#?v3.4.2?? sns.set(style='darkgrid',?context='talk',?palette='rainbow')df?=?sns.load\_dataset('tips')?? df.head()
技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig,?ax?=?plt.subplots(nrows=1,?ncols=2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? sns.boxplot(data=df,?x='tip',?ax=ax[1]);
在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
? 例如,我们可以像这样为每个子图添加标题:
fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? ax[0].set\_title("Histogram")?? sns.boxplot(data=df,?x='tip',?ax=ax[1])?? ax[1].set\_title("Boxplot");
在循环中将所有数值变量用同一组图表示:
numerical?=?df.select\_dtypes('number').columnsfor?col?in?numerical:?? ?fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? ?sns.histplot(data=df,?x=col,?ax=ax[0])?? ?sns.boxplot(data=df,?x=col,?ax=ax[1]); 技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s
? 语法与之前略有不同:
plt.figure(figsize=(10,4))?? ax1?=?plt.subplot(1,2,1)?? sns.histplot(data=df,?x='tip',?ax=ax1)?? ax2?=?plt.subplot(1,2,2)?? sns.boxplot(data=df,?x='tip',?ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)
我们同样能定制子图形。例如加个 title
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)??? ?ax.set\_title(f"Boxplot?of?{col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical?=?df.select\_dtypes('category').columnsplt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)
顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.suptitle('Category?counts?for?all?categorical?variables')?? plt.tight\_layout()
此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!
python绘图篇
1,xlable,ylable设置x,y轴的标题文字。
2,title设置标题。
3,xlim,ylim设置x,y轴显示范围。
plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。
plt.saveFig()保存图像。
面向对象绘图
1,当前图表和子图可以用gcf(),gca()获得。
subplot()绘制包含多个图表的子图。
configure subplots,可调节子图与图表边框距离。
可以通过修改配置文件更改对象属性。
图标显示中文
1,在程序中直接指定字体。
2, 在程序开始修改配置字典reParams.
3,修改配置文件。
Artist对象
1,图标的绘制领域。
2,如何在FigureCanvas对象上绘图。
3,如何使用Renderer在FigureCanvas对象上绘图。
FigureCanvas和Render处理底层图像操作,Artist处理高层结构。
分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。
直接创建Artist对象进项绘图操作步奏:
1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)
2,为Figure对象创建一个或多个Axes对象。
3,调用Axes对象的方法创建各类简单的Artist对象。
Figure容器
如何找到指定的Artist对象。
1,可调用add_subplot()和add_axes()方法向图表添加子图。
2,可使用for循环添加栅格。
3,可通过transform修改坐标原点。
Axes容器
1,patch修改背景。
2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。
3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。
1,可对曲线进行插值。
2,fill_between()绘制交点。
3,坐标变换。
4,绘制阴影。
5,添加注释。
1,绘制直方图的函数是
2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位
数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分
布的分散程度等信息,特别可以用于对几个样本的比较。
3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察
值的大小。
4,散点图
5,QQ图
低层绘图函数
类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。
在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。
绘图区域与边界
R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。
添加对象
在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。
?points(x, y, ...),添加点
?lines(x, y, ...),添加线段
?text(x, y, labels, ...),添加文字
?abline(a, b, ...),添加直线y=a+bx
?abline(h=y, ...),添加水平线
?abline(v=x, ...),添加垂直线
?polygon(x, y, ...),添加一个闭合的多边形
?segments(x0, y0, x1, y1, ...),画线段
?arrows(x0, y0, x1, y1, ...),画箭头
?symbols(x, y, ...),添加各种符号
?legend(x, y, legend, ...),添加图列说明