数据分析师要学什么,数据分析师可以考哪些证
数据分析师要学什么 数据分析师介绍
1、数据分析要学统计学、编程能力、数据库、数据分析方法、数据分析工具;数据分析师是数据师Datician[det???n]的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
2、数据分析师经常使用数据库,要掌握数据库的使用。学会如何建表和使用SQL语言进行数据处理,可以说是必不可少的技能。
3、数据分析师更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。
数据分析师需要学习什么
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
如何学?
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。
花1个月学习数据库知识。
花1-2个月学习基础的统计学知识。
花1个月学习点linux的知识。
花1~2个月去学习最基础的数据分析软件的操作。
数据分析入门容易提高难,题主目前处于初级阶段,可以通过自学观看视频,或者系统培训来提高自己,已工作来说,接受系统培训会更加快速,更推荐跟着课程系统性的学习,搭建好逻辑框架。
数据分析师要学什么
统计学,数学,逻辑学是数据分析的基础,是数据分析师的内功。
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。
以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
大数据分析师要学什么
数据分析师需要学习统计学、编程能力、数据库、数据分析方法、数据分析工具等内容,还要熟练使用Excel,至少熟悉并精通一种数据挖掘工具和语言,具备撰写报告的能力,还要具备扎实的SQL基础。
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
数据分析师可从事:IT系统分析师、数据科学家、运营分析师、数据工程师。
更多职业教育培训,请查看: