递归算法,递归算法怎么理解
一个递归算法必须包括什么?
一个递归算法必须包括终止条件和递归部分。
递归算法在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。
能够解决的问题:
数据的定义是按递归定义的。如Fibonacci函数。
问题解法按递归算法实现。如Hanoi问题。
数据的结构形式是按递归定义的。如二叉树、广义表等。
Python进阶:递归算法
??递归算法常用来解决结构相似的问题。
??所谓结构相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小,并且依赖第一部分的结果。
??本质上,递归是把一个不能或不好解决的大问题转化成一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。
??实际上,递归会将前面所有调用的函数暂时挂起,直到递归终止条件给出明确的结果后,才会将所有挂起的内容进行反向计算。其实,递归也可以看作是一种反向计算的过程,前面调用递归的过程只是将表达式罗列出来,待终止条件出现后,才依次从后向前倒序计算前面挂起的内容,最后将所有的结果一起返回。
常见算法1——递归算法
递归算法就是通过自身不断反复调用自身以解决问题,其中最经典的也就是汉诺达和斐波纳契数列的问题了。
1.汉诺塔问题
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,一次只移动一片,不管在哪根针上,小片必在大片上面。当所有的金片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。
分析:挪到C的金片也是从下到上由大到小的顺序排列,那么A之剩下最下面的金片移动到C的时候,C上面是不可以有金片的,这个时候A上面只有第n个金片,B上面有n-1个金片,C上面没有金片,然后这个情况就和刚开始情况相同了,只不过A和B颠倒了位置而已。
(1)n-1个金片从A通过C移动到B,n-1个金片从A通过C移动到B也是不断调用自身逐步缩小范围。通过递归调用后,就完成了A上面仅剩下最大的金片,C上面没有金片,B上面有n-1个金片。
(2)最大的那个金片从A移动到C
(3)调用自身重复刚开始的情况,只不过现在有金片的是B,即B通过A把金片移动到C。
2.斐波纳契数列
2.1生兔子问题
古典问题:3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?下面先从小到大分析下这个情况
分析:假设将兔子分为小中大三种,兔子从出生后从第三个月开始每个月就会生出一对兔子,也就是一旦兔子变为大兔子那么他就生了一对兔子
分析情况图如下
很明显这个是一个为斐波那契数列,即如果用f(n)表示第n个月的兔子的对数,那么f(n)=f(n-1)+f(n-2)
2.2走台阶问题
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间复杂度。
分析:假设我们现在还有最后一步要走,可能的情况有哪些?
(1)我们站在第9级上,一步1级后到达顶端;
(2)我们站在第8级上,一步2级后到达顶端;
所以,最后一步可以走1级或者2级,不外乎两种情况。
再假设,已知从0级到9级的走法有M种,从0级到8级的走法有N种,那么从0到10级的走法和M、N有什么关系呢?从0到10级的走法一共是多少种呢?答案是M+N。
所以逐步递归,说白了,这还是个Fibnacci数列。即f(n)=f(n-1)+f(n-2),事件复杂度是2^n
台阶问题的变种:
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.....也可以跳n级。求总共有多少总跳法
分析:用Fib(n)表示跳上n阶台阶的跳法数。如果按照定义,Fib(0)肯定需要为0,否则没有意义。但是我们设定Fib(0) = 1;n = 0是特殊情况,通过下面的分析就会知道,强制令Fib(0) = 1很有好处。因为Fib(0)等于几都不影响我们解题,但是会影响我们下面的分析理解。
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = 2;
到这里为止,和普通跳台阶是一样的。
当n = 3 时,有三种跳的方式,第一次跳出一阶后,对应Fib(3-1)种跳法; 第一次跳出二阶后,对应Fib(3-2)种跳法;第一次跳出三阶后,只有这一种跳法。Fib(3) = Fib(2) + Fib(1)+ 1 = Fib(2) + Fib(1) + Fib(0) = 4;
当n = 4时,有四种方式:第一次跳出一阶,对应Fib(4-1)种跳法;第一次跳出二阶,对应Fib(4-2)种跳法;第一次跳出三阶,对应Fib(4-3)种跳法;第一次跳出四阶,只有这一种跳法。所以,Fib(4) = Fib(4-1) + Fib(4-2) + Fib(4-3) + 1 = Fib(4-1) + Fib(4-2) + Fib(4-3) + Fib(4-4) 种跳法。
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后,后面还有 Fib(n-n)中跳法。Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n) = Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)。
通过上述分析,我们就得到了通项公式:
因此,有 Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)
两式相减得:Fib(n)-Fib(n-1) = Fib(n-1) =====》 Fib(n) = 2*Fib(n-1) n = 3
这就是我们需要的递推公式:Fib(n) = 2*Fib(n-1) n = 3
什么是递归算法?
递归做为一种算法在程序设计语言中广泛应用.是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现像.
程序调用自身的编程技巧称为递归( recursion)。
一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:
(1) 递归就是在过程或函数里调用自身;
(2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口,否则将无限进行下去(死锁)。
递归算法一般用于解决三类问题:
(1)数据的定义是按递归定义的。(Fibonacci函数)
(2)问题解法按递归算法实现。(回溯)
(3)数据的结构形式是按递归定义的。(树的遍历,图的搜索)
递归的缺点:
递归算法解题的运行效率较低。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。
什么是递归算法
递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c--%c\n",x,y);
}
void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
main(){
int n;
printf("input the number of diskes:");
scanf("%d",n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。
什么叫递归法
1、递归算法概念:
在函数或子过程的内部,直接或者间接地调用自己的算法。
2、基本信息:
递归算法是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数或过程来表示问题的解。一个过程或函数直接或间接调用自己本身,这种过程或函数叫递归过程或函数。