地质建模论文,工程地质学论文

http://www.itjxue.com  2023-01-08 04:09  来源:未知  点击次数: 

对三维地质建模的一些新认识

三维地质模拟的目标是将离散的空间地质采样样本点数据转变为连续、可视的三维地质模型。国内外在该领域的研究重点、研究方法及应用领域等方面存在一定的不同。

(1)西方发达国家越来越重视能源与环保在国家战略中的重要地位,研究重点集中在石油、天然气的开采,地热、水资源保护与利用等方面;而国内处于经济快速发展阶段,对基础设施,尤其是城市地下空间开发、高速公路隧道等方面,有巨大的需求,从而推动地质建模方法的研究开发与利用。实质上,这里存在一个地质建模尺度问题,地质建模分为区域尺度、工程尺度、统计尺度、标本尺度(张发明,2007),国外地质建模重点在于表现区域尺度特征(如波兰已建立的国家级地质模型),就可以忽略地质中的一些细节,比如地层以系为单位,则做出来的模型大气而又漂亮。而国内现在的重点在工程尺度上,需要对影响工程建设的褶皱、断层等构造进行精确描述,对建模技术有相对较高的要求。国外以其雄厚的技术实力,在矿山开采地质建模方面处于技术领先地位,但矿山行业的重点在于对矿石品位及储量的评价和预测方面。

(2)从对地质体内部属性的处理分析方面,可将地质建模分为结构建模和属性建模(潘懋等,2007)。结构建模侧重于对地质体空间位置、几何形态和空间关系的表达,认为地质体内部属性是均一的;属性建模则通过地质统计学等方法实现地质体内部属性的非均一性表达。结合地质勘探的数据成果,地质建模可从结构建模开始,由结构建模来展现地层和构造的宏观分布,然后经过属性插值来反映其内部差异。

(3)目前,还没有一种地质建模方法能适合所有的应用领域。试图以一种方法来建立研究区域的三维地质模型,缺少对不同场地特征的层次性考虑。实际应用中,应根据具体的三维建模目的、地质构造特征及现有地质资料来选择合适的建模方法。根据建模所使用的数据源不同,如野外实测数据(地质测绘、钻井数据)、人工绘制数据(如地质剖面)及多源数据等,并结合场地特征,选择适合的地质建模方法。可以对地质建模从技术上进行总体分类:数据驱动型和技术驱动型。在当前工程实践中,地质信息的获取以地表的地形地质测绘、地下的地质勘探为主,以卫星遥感、物探等技术为辅,以现有工程地质数据建立研究区域三维地质模型构成数据驱动型建模方法。随着建模技术的发展和三维地质信息获取手段的丰富,以已有建模技术和应用目标为导向,进行相应的地质信息获取,然后建立三维地质模型,这种方法称为技术驱动型建模方法。

(4)将三维地质模型应用于实际工程中才是地质建模的本质目标,通过工程应用发现问题,反过来可以推动地质建模方法的发展。对比国内外在三维地质建模研究方面的差距,可以发现国外集中在三维地质体的可视化表达、建模技术及应用技术三个领域,而国内则集中在系统架构、外在表现形式方面研究较多,对于其中可能涉及的关键技术研究的相对较少。

三维地质建模的实际意义

要对地下水进行管理、规划,就必须查明水文地质条件,也就是要对地下水及其赋存的地质结构有清晰的认识。在水文地质领域中,研究对象都具有空间特征,地下水及其赋存介质埋藏于地面以下,对地下水运动规律只能依靠水文地质勘察资料和水位动态资料来揭示。而这些资料一般都是以平面图、剖面图及表格形式提供的,它们所反映的数据是离散的,有局限性的,在三维空间中研究这些数据时,其拓扑关系还难以考虑清楚;同时,由于地质空间分布的复杂性、模糊性与不确定性,在仅仅具有钻孔或少量的地质离散点信息的地区上,技术人员则很难得到直观有效的地质信息。也就是说,水文地质工作者必须对这些纷杂的数据信息进行仔细的分析理解,才能洞察研究对象的本质,获得对研究对象的认识和理解,但这是一个十分费时而繁琐的过程,对他们来说是一种沉重的负担。

如果能将地下水及其赋存介质进行三维可视化表达,构建出其实体模型,则将有力地支持水文地质工作者对地下水运动规律的认识,同时,也为地下水的合理开采及其开采过程中的地质环境保护提供决策支持。

基于以上认识,需要我们建立一种权威的、不断更新的、区域性的、具有传承性的地下水地质结构三维可视化模型,这个模型建立的初期可能是粗糙甚至是有错误的。但随着专业人员对地质结构认识的不断深化和勘探精度的提高,这个模型会逐渐准确直至完全正确。计算机技术发展到今天,已经为我们提供了建立这样真三维地质模型的技术条件。

利用计算机图形学及可视化技术,可将二维抽象的地质信息以三维可视化的图形效果直观形象地表达出来,建立逼真的空间立体地质模型,并任意剖切地质体、对地质体进行三维交互信息查询等。这样可更高效地描述各种地质信息,如特定区域岩性,某一区域地层的厚度等;直观有效地表达各种地质现象间的拓扑关系,如地层的接触方式等,从而迅速提高专业技术人员对地质现象的认识,提高工作效率,发挥地质资料的最大价值。同时,在三维地质模型的建立中,还会生成一系列的三角网格数据,这为后续的地下水数值模拟奠定了基础。也就是说,三维地质建模还能将水文地质工作者从繁琐的网格剖分中解放出来。

建立地下水三维地质可视化模型,不但减轻了水文地质工作者的任务,方便他们进行专业领域知识的讨论、传播和发展,而且,这样的模型还能将专业领域复杂的、抽象的或专业性过强的成果及结论用简洁的、直观的、易于被广泛接受的方法和形式表现出来,它还将有助于不同领域间方便、正确地进行知识交流,有助于决策者做出正确判断。

基于二维地质建模的两种地震数值模拟方法的应用及分析

赵忠泉

(广州海洋地质调查局 广州 510760)

作者简介:赵忠泉,男,(1983—),硕士,主要从事海洋油气资源调查研究工作,E-mail:zzqhello@163.com。

摘要 利用地震数值模拟技术结合实际资料,可以建立各种地质体的地震识别模型,有效地避免地震现象的多解性,从而可以提高解释的精度。本文介绍了二维地质建模的方法流程及两种模拟方法-褶积法和PSPI波动方程法,前者无边界条件约束和频率域中的信号损失,简洁易行,计算稳定,应用广泛,是最早的地震波场模拟方法;后者通过求解波动方程,包含丰富的波场信息,能够充分反映地震波的动力学和运动学特征。实际应用中利用褶积法对三维潮道模型及简化的碳酸盐岩多旋回倾斜薄互层沉积模型进行了模拟;利用零炮检距的频率波数域的波动方程法模拟了生物礁的地震响应,结果对于碳酸盐岩生物礁识别有一定指导意义。

关键词 地质建模 数值模拟 褶积法PSPI法

不同地质体由于其岩性、物性、含油气性、内部结构和岩石组合等的差异,在地震上具有不同的反射特征,包括内部结构、外部形态、振幅、频率等参数。由于地震波在地下地质体中传播的复杂性,加上各种干扰,造成了地震剖面中的各种反射现象存在多解性,大大增加了地震解释的难度。利用地震数值模拟技术结合实际资料,在建立不同地质体的地震识别模型的同时也有效地避免地震现象的多解性,从而可以提高解释的精度。

1 地质建模

地震数值模拟技术的基础是地质地球物理模型的建立,可归结为对地质及地球物理模型结构的数学描述。

二维封闭结构模型用于建立复杂地质模型。二维封闭结构模型就是定义相同地质属性为一独立封闭的地质单元,按照地质属性将地质模型划分成多个独立封闭的地质单元,把所有独立封闭地质单元按照空间分别有序地排列起来,这样组成的集合体就构建了一个二维地质模型。封闭结构模型是以积木方式定义地下地质结构,可以描述非常复杂的地质体。二维封闭结构模型被描述为具有相同地质属性(速度、密度等),并被地层界面、断层界面或模型边界所围成的地质单元的有机组合。对封闭结构模型的描述,实际上就是描述封闭地质单元和封闭地质单元之间的关系,前者包括对封闭地质单元属性和封闭地质单元边界的描述;后者是对地质单元空间关系的描述,也就是描述封闭地质单元边界相接关系及地层属性[1]。

在进行数值模拟过程中,为了验证某些复杂地质体的波场特征,需要绘制多种不同的地质模型,通常可借助常规绘图软件(绘图板、Photoshop、CorelDraw,AutoCAD等)绘制好二维封闭结构面,再根据图像处理中的区域填充算法(种子填充和扫描转换填充),对不同二维封闭结构面进行不同颜色的填充。其中不同颜色代表不同的二维封闭结构面属性(速度、密度等);合并相同属性的封闭面,形成最终的二维封闭结构模型[1]。为了得到二维封闭结构模型的属性(速度、密度等)模型,需要对二维封闭结构模型的彩色图进行速度像素空间和属性空间转换,根据颜色空间和属性空间的相互映射,就可以得到复杂地质体的属性(速度、密度等)模型,如图1为模型创建流程图。

图1 二维封闭结构模型建立流程图

2 两种数值模拟方法

2.1 褶积模型

在褶积模型中,我们把地震反射信号s(t)看作是地震子波w(t)与地下反射率r(t)的褶积。地震子波w(t),使用实际地震系统记录到的地下一个单独的反射界面反射的波形(如图2,理想的无噪声褶积过程)。反射率r(t)则代表理想的无噪声地震记录。记录到的地震道s(t)可看作是地震信号w(t)* r(t)与可加噪声n(t)之和,因此可以把地震道看作是一种有噪声干扰的,经过了滤波的地下反射率的变形。

在无噪声褶积模型中,我们把地震信号S(t)看作是地震子波w(t)和地下反射系数r(t)的褶积:

南海地质研究.2012

式中:s(t)——合成地震记录;

r(t)——反射系数;

w(t)——地震子波。

图2 褶积过程

2.2 PSPI波动方程法

通过求解波动方程的数值模拟方法,能够充分反映地震波的动力学和运动学特征,波场信息丰富,模拟结果较为准确。这里仅介绍适合横向速度剧烈变化的频率-波数域相移加插值的波场延拓方法[2]。

相位移加插值的波场延拓方法,简称PSPI法,基本思想是在波场向下延拓的每个深度步长Δz之内,将波场的延拓分成两部进行,首先用L个参考速度V1,V2,…VL,将位于深度zi处的波场p(x,zi,ω)延拓到zi+1=zi+Δz处,得到L个参考波场p1(x,zi+1,ω),p2(x,zi+1,ω),…,PL(x,zi+1,ω)。第二步,按实际的偏移速度V(x,z)同参考速度V1,V2…,VL的关系,用波场插值的方法求出zi+1处的波场p(x,zi+1,ω),按同样的步骤,可将zi+1处的波场值p(x,zi+1,ω)延拓到深度zi+2,得p(x,zi+2,ω),直到延拓到最大的深度zmax为止。

对于各向同性介质,取二维标量声波方程作为延拓的基本方程:

南海地质研究.2012

式中,p=p(x,z,t)为二维地震波场值;x,z分别为水平方向和垂直方向坐标轴;t为时间轴;v(x,z)为纵、横向都可变的地震波传播速度。将式(2)分别对x、t作傅氏变换,考虑到并考虑到?2/?x2和与(-ikx)2和(iw)2的对应关系,可得:

南海地质研究.2012

式中, 是p(x,z,t)的二维傅氏变换;v为地震波速度;w为圆频率;kx为水平波数;kz为垂直波数。零炮检距情况下的地震记录模拟只考虑单程波,因此可得到相位移波场延拓公式如下:

南海地质研究.2012

式中, (kx,zi,w)为频率波数域波场值;Δz为深度延拓步长;kx为测线方向波数;kz为深度方向波数。式(4)为二维波场正演公式,其延拓方向为由地下向地面延拓;式(5)为二维波场偏移公式,其延拓方向为由地面向地下延拓。

为了适应地下地震波场速度在纵横向均可变的要求,在同一延拓深度内用几个不同地震波速度分别作相移,再用拉格朗日插值公式进行插值,就可求出所有的以不同速度传播的延拓波场值P(x,zi+1,t),从而近似地解决了横向变速时的波场延拓问题[3]。

3 模拟实例

3.1 三维潮道数值模拟

运用褶积原理建立了一个简单三维潮道模型,此三维潮道事实上为多个(128)二维剖面排列而成,三维模型的采样点为128×128×128,利用MATLAB实现。选用子波为雷克(Ricker)子波,其公式为:

南海地质研究.2012

其中fp为主频。在处理过程中选用主频为fp=40 Hz、采样间隔2 ms,对称采样点数为24,子波波形如图3。

图3 雷克子波

图4 潮道平面图

图4为潮道平面图,该图仅反映了潮道的平面形态,作为计算机实现三维建模的边界控制,横坐标代表inline线,纵坐标代表xline(crossline)线,图5为三维地质模型示意图,模型较简单,整体由三个水平层叠置而成,在第二层和第三层之间镶嵌了形如图4的潮道,此潮道没有考虑进水方向,根据此地质模型进行计算机地震正演模拟,可得到相应三维地震数据体,从图中可以看到,黄色虚线(上)和蓝色虚线(下)位置上,分别横跨了三个潮道分支和两个潮道分支,就是说在相应两条虚线位置上的两条测线应该分别有三个和两个潮道显示,提取相应的两条剖面如下图6和图7:

图5 三维地质模型

图6 xline=100(黄色虚线)剖面

图7 xline=100(蓝色虚线)剖面

再在三维数据体中沿水平方向做切片,即提取时间切片。图8为时间切片在地震剖面上的位置示意图,图中五条标示线从上到下依次为白色实线、黄色虚线、白色实线、红色虚线和白色实线,与之对应的时间分别为70 ms、85 ms、95 ms、99 ms和110 ms(时间范围是0~128 ms),图9~图13为相应切片,从图中可以看出,随着所做切片时间的增大(深度的增加),潮道的展布范围逐渐减小,由于地层是水平层状的,使得时间切片等同于地层切片和沿层切片,其切片效果非常明显,切片中潮道形态得到了很好的展示,但是在多个切片中发现,从可以见到潮道形态一直到潮道消失的时间范围是在70~110 ms之间,而潮道的真实范围是在80~100 ms之间,显然依据切片所圈定的潮道的范围相比真实的范围扩大了,究其原因是由于不管选取哪一种子波,子波都有一定的延续长度和有限频宽,这就限制了合成地震记录本身的分辨率并不能达到等时厚度反射系数序列的分辨率。因此在对实际地震资料进行解释的时候,对地质异常体边界的识别应该考虑地震子波并非脉冲波所带来的影响。

图8 剖面示意图

图9 切片t=70 ms

图10 切片t=85 ms

图11 切片t=95 ms

图12 切片t=99 ms

图13 切片t=110 ms

3.2 薄互层沉积模型

图14为简化的碳酸盐岩多旋回倾斜薄互层沉积模型(Zeng,2003),模型简化是为了更好地突出由岩相控制的波阻抗结构和地震信号之间的相互关系。该模型所有倾斜的倾角都相同,每层都有相同的垂直时间厚度(5 ms或15 m,速度为6000 m/s),泥岩与低孔隙度颗粒灰岩的波阻抗差,以及低孔隙度颗粒灰岩与高孔隙度颗粒灰岩的波阻抗差都相同,所有高孔隙度颗粒灰岩具有相同的深度范围,综合起来形成了一个水平的岩性地层单元。

其时间域地震响应(图15)中,高频情况下(60 Hz雷克子波),地震反射被建设性地调谐到时间地层单元,因此地震同相轴沿着时间地层单元分布(图15a)。当子波频率减到40 Hz时,地震反射对时间地层单元和岩性地层单元都有响应(图15b)。当用30 Hz雷克子波时(图15c),地震同相轴破坏性地调谐到时间地层单元和建设性地调谐到岩性地层单元,因而时间地层单元的反射进一步变弱,地震同相轴被岩相反射所控制[4]。

这个模拟过程强调了了解地质格架和时间地层单元以及岩性地层相带厚度尺度的重要性。时间地层(图15a)和岩性地层(图15c)成像都是有用的,前者用于对比,后者用于粗略的储层评价。然而,这两种响应不能混淆在一起。图15b中的两组相互矛盾的地震同相轴会造成地震假象[4]。

图14 简化的碳酸盐岩多旋回倾斜薄互层沉积模型

3.3 生物礁数值模拟[5~7]

频率—波数域的相移加插值偏移(PSPI)在每一个深度间隔内使用多个参考速度进行偏移,由多个偏移结果插值生成最终的偏移剖面,所用插值的速度越多,越能反映实际介质的速度变化情况,此方法在成像精度及横向变速适应性上具有很大的优越性,但处理所需的时间稍长,鉴于本文的二维叠后建模对处理时间没有过高要求,因此应用PSPI方法做正演、偏移。

图16为某区块过生物礁的原始地震剖面,图17为根据此剖面建立的生物礁速度模型:模型速度变化范围是5600 m/s到5980 m/s,从图16中可以看出生物礁的底界面清晰可辨,围岩有披覆现象,内部呈杂乱反射。为了检验该地质建模的正确性,先采用PSPI方法对该模型进行了波场正演模拟计算,其模拟剖面如图18所示。由于生物礁埋藏深,生物礁顶底反射的弧度较大,不规则点的绕射波杂乱,因此用图15的速度模型对其进行叠后时间偏移,得到了偏移剖面(图19),横向表示256个地震道,纵向表示零偏移距反射时间,礁体最大时间厚度约40 ms。从图19可以看出,模拟记录中的礁体顶界与原始剖面有一定差距,但是生物礁底界反射和内幕反射以及侧翼反射与原始剖面基本一致,其他的地层界面形态与原始剖面也吻合较好,在一定程度上验证了地质模型的正确性,说明当生物礁与围岩之间存在一定波阻抗差异时,在地震剖面上必然出现异常反映,经过有效的构造和参数反演,能够将其分辨出来。相信通过模型改进以及算法中参数的调整,能够与原始剖面更好地吻合,从而为生物礁的地震解释提供一种有力的验证工具。

图15 图14模型时间域地震响应

4 结论

地震数值模拟(正演)技术基于地球物理模型的建立,运用概念二维封闭结构地质模型的建立方法,得到复杂地质体的数学模型,结合各种算法对其进行模拟从而可以验证相应地质体的地震波场特征;结合实际资料建立不同地质体的地震识别模型,可以有效地减少地震现象的多解性,从而提高解释的精度;褶积法无边界条件约束和频率域中的信号损失,简洁易行,计算稳定,应用广泛,本文用此方法模拟的伪三维潮道模型及倾斜薄互层模型取得了较好的效果;通过求解波动方程的数值模拟方法,包含丰富的波场信息,能够充分反映地震波的动力学和运动学特征,PSPI波场沿拓方法为其中之一,利用正演与偏移相结合的流程模拟了生物礁的地震响应特征,检验解释成果的正确性,为生物礁的地震解释提供了一种有力的检验工具。

图16 原始剖面

图17 生物礁地质速度模型(256×256)

图18 正演记录(子波主频30Hz)

图19 偏移剖面(子波主频30Hz)

参考文献

[1]刘远志.碳酸盐岩地震相分析与数值模拟[D].成都:成都理工大学,2009.

[2]韩建彦.复杂地质体地震正演与偏移[D].成都:成都理工大学,2008.

[3]贺振华,王才经等.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.

[4]Zeng Hongliu &Kerans,C.Seismic frequency control on carbonate seismic stratigraphy;a case study of the Kingdom Abosequence,West Texas,American Association of Petroleum Geologists Bulletin,2003.87,273~293.

[5]贺振华,黄德济,文晓涛,等.碳酸盐岩礁滩储层多尺度高精度地震识别技术[R].成都:成都理工大学地球探测与信息技术教育部重点实验室,2009.

[6]熊晓军,贺振华,黄德济.生物礁地震响应特征的数值模拟[J].石油学报,2009,30(1):7~65.

[7]熊忠,贺振华,黄德济.生物礁储层的地震数值模拟与响应特征分析[J].石油天然气学报,2008,30(1):75~78

The application and analysis of two kinds of seismic numerical simulation method based on the2D-geological modeling

Zhao Zhongquan

(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Pick to using seismic numerical simulation technology combined with the actual seismicdata,we can build all kinds of seismic recognition model of geologic body and effectively avoidthe multiple solutions of seismic phenomenon,which can improve the precision of the explana-tion.This paper describes the method of the process of 2D geological modeling and two simulationmethods,seismic convolution method and PSPI wave equation method,the former has no bounda-ry condition and the signal loss in frequency domain,is concise and easy,it can be calculatedsteadily and be applied widely,is the earliest simulation method in seismic wave field,the latterbased on the wave equation,it contains the rich information in wave field,can fully reflect thedynamics and kinematics characteristics of seismic wave.In the practical application,we use theconvolution model in 3D-tidal channel model and the multi-cyclic simplified deposition model oftilt thin interbed layer of carbonate;We simulate the seismic response of reefs using the method ofzero-offset wave equation in frequency and wave number domain,it is confirmed that the resulthas definite significance for the identify of the reef.

Key words:Geological modeling Numerical simulation Convolution PSPI method

地质体建模

(一)一般地质体构建算法

通过表面表示法表示地质体具有存储量小,建模速度快的优点,本文的地质体采用面表面表示法。一个地质体由多个地层组成,一个地层可以由以下的表面组成,如图4-68所示。

图4-68 地质体的几何构成

①两个相邻的地层顶面组成一个地层的上表面和下表面。

②地层与每个断面相交而成的曲面称为内围边。

③地层与每个工区表面相交而成的曲面称为外围边。

在一般情况下,在已知地层面和断层面的情况,都采用地层面和断层面求交的方法来计算地质体。具体算法如下:

(1)将地层面排序。

根据地层顶面的海拔排序,按从海拔低到海拔高的地层顶面的顺序下,前一地层面是随后的地层面地层底面,n个地层顶面可以构造n-1个地层体。如图4-69所示:三个地层顶面表示两个地层体,最下面的地层顶面不需要计算实际的地层体。

断面与地层面求交,每两个相邻的地层与断层求到一组交线,将交线整理连称多边形环(可能多个),将每个环细分为三角形网格,根据断面的采样点插值求得的每个环的表示的曲面,得到内围边。

图4-69 地层排序

(2)用工区表面与地层面及断面求交,得到多组环。

如图4-70所示:得到地层与工区表面的围边。围边和地层表面共同组成了地层体——外围边。

图4-70 外围边连环示意图

在这个算法求交的过程中,断面与地层面求交存在需要严格控制几何一致性的问题,否则可能造成在连环的过程中因几何位置不统一,连环失败的情况,对建模的精度要求很高。如图4-71所示,地层顶面之间有互相相交的情况,在连环时难以处理:

图4-71 地层面互相侵入图

综上所述,直接通过曲面求交的方式来构建地质体数值稳定性很难得到保证,本文在建立地层面模型时采用的是基于变形场的地层面模型构建算法,根据该算法思想可知,变形场可以作用于整个建模空间,对整个地层体同样有效,所以可以通过已建立好的变形场来解决地质体建模的问题。

(二)地层体构建算法

本算法是在已知地层面和断层面的情况下,采取变形场的方法来构造地质体。根据变形场建模的思想,所有的地质元素都是在逐步断裂的情况下,形变达到当前的形态的,所以地质体的围边也是由初始的形态变形而成的。初始状态的地层与断层面相交形成的围边具有形状简单的特点,一般情况只有四个拐点,初始地层面的围边易于求解,所以可以采用通常的方法求得初始地层的围边,然后将变形场逐级作用于初始围边,就可以得到当前状态下地层体的围边了。生成地层的具体算法如下:

(1)首先构建地层初始网格,及地层的初始外围边网格;

(2)按断裂顺序找到当前断裂的断面,直至地层没有新裂口为止;

(3)复制一份断层网格记为A,用地层裁剪断层网格A分为若干地层围边,分层后的断层网格被复制两份,一份是断层左侧地层裂口的内围边,一份是断层右侧地层裂口的内围边;

(4)将该断层的变形场作用到地层上及其围边上,地层的表面网格发生形变,围边网格发生变形;

(5)按上述步骤(2),(3),(4)作用于地层面即可得到地层的体网格。

虽然在这个过程中地层和断层有求交的操作,但这种操作可以保证是在连续地层面和断面之间的求交,所以稳定性高,初始地层面的易于求交简单。变形后的地层体如图4-72所示:

图4-72 不连续的地层体

(三)小结

本小节介绍了在基于变形场的地质元素的生成方法,充分证明了变形场和断面树机制不仅能应用于地层构建,也在地质体构建中起到框架的作用,变形场和断面树作为整个地质体模型建模框架有效地完成构造信息自动建模工作。

研究内容及技术路线

中国铜矿数字矿床模型评价系统以经验模型法的多元信息综合评价为基础,同时参考澳大利亚地调局及美国地调局有关研究成果的基本研究思路,综合经验模型法及成因模型法特点,以矿床模型及勘查数据共同驱动,完成矿产资源评价。本系统最大特点是通过建立数字矿床模型计算机智能推理网络系统,进行实测多源地学数据的客观综合分析,推理判别预测区可能产出的矿床类型,然后利用地学综合信息空间数据库中可用于定位的GIS地学图层数据,在GIS软件平台上进行多元信息综合处理,圈定可能赋存该类矿床的地质找矿可行地段。最后,选取适当定量分析方法,完成预测区的定位及远景区级别优选等区域成矿潜力的综合定量评价。以上几步工作是在统一的计算机软件平台上,通过一体化系统处理完成。此外,系统在运用数据分析方法综合、发掘、提取各种成矿潜力定量预测信息时,整个评价过程始终围绕“矿床模型”这个核心,强调矿床成因的重要作用,真正达到模型驱动和数据驱动的统一。

一、原始描述性矿床模型研究

中国铜矿数字矿床模型评价系统以我国现有典型铜矿床描述性模型研究成果为基础,对我国铜矿典型矿床描述性模型进行概括和总结,分析研究矿床描述性模型中所涉及的有关地质、构造、地球化学、地球物理和矿物学等诸学科的有关概念的内涵和外延及其自然语言描述方式,抽取其中最能概括并区分各种矿床类型的内容,把这些用自然语言描述的项目转化成数据和符号,建立我国铜矿主要典型矿床成因模型的数字矿床模型原始数据库。在此基础上,通过解决描述矿床模型的自然语言与计算机可以识别和处理的符号集合之间的对应关系,建成矿床类型计算机专家推理系统知识规则库,实现矿床模型智能推理。按照《中国铜矿床》(黄崇轲主编,2001)的划分方法,我国铜矿床按矿床成因类型归类划分为10种典型类型,它们是岩浆熔离铜镍硫化物型、斑岩型、接触交代(矽卡岩)型、海相火山气液型、陆相火山气液型、热液型、海相沉积型、陆相沉积型、受变质型和表生(风化壳)型。本论文采用这10种铜矿类型为原始描述性矿床模型分类依据,通过分析、研究、对比大量典型矿床实例,概括总结出每一类矿床的综合地质特征及标志组合,建立了10个中国铜矿床地质找矿概念模型。然后,从中抽取可用于推理判类、并能把10个铜矿模型区分开的地质特征,用来建立相应的计算机推理网络模型,作为系统进行推理判类的依据。

建立矿床地质描述模型,首先必须确定模型研究依据哪些成矿地质内容,称为基本建模要素。通过参考查阅国内外大量矿床模型建模理论著作和文献,进行分析、研究、对比,经过专家咨询、审核,最终确定基本建模要素。在具体建模过程中,各种铜矿床类型的典型矿床实例是获取矿床地质描述模型的直接依据。通过分析对比,我们选择73个典型铜矿床作为本研究建立10个类型矿床地质描述模型的参考实例,依此建立我国10类典型铜矿原始矿床描述模型。

二、数字矿床模型专家系统建立

矿床地质描述模型数字化(计算机化)的过程包括建立矿床地质知识模型、建立矿床模型计算机推理网络模型、形成矿床找矿模型专家系统知识推理规则、建立地质专家系统四个阶段。

1)根据基本建模要素建立的各种类型铜矿床地质描述模型中,存在着可用于判别不同矿床类型的特别建模要素,称为特征地质标志。通过进一步分析上述矿床地质描述模型,从中归纳、抽取可用于推理判类、能够把10类铜矿模型区分开的特征地质标志(包括从宏观大地构造背景到微观岩矿镜下特征),由此建立起不同类型铜矿床的矿床地质知识模型。

2)建立矿床地质知识模型的目的是为了建立矿床模型专家系统的计算机推理网络模型。为此,对矿床地质知识模型进一步抽取、归纳,通过研究专家系统中建立推理机的技术和方法,采用树状结构图表示矿床地质知识模型,得出不同矿床类型的推理网络结构图,建立矿床找矿模型的计算机推理网络模型。

3)从计算机推理网络模型中抽取、产生矿床模型的计算机推理规则,并由此形成矿床模型专家系统推理知识规则库。

矿床找矿模型计算机推理网络模型对网络中的每个结点给出先验概率,以反映每个结点对该矿床模型的相对重要性,同时对模型的每条规则分别给出充分性量度值LS和必要性量度值LN,用以反映该条规则的可信度,这三个参数反映了领域专家的知识和经验。为了获取三个参数值,确保计算机推理网络模型的权威性、代表性及保证专家系统最终推断结果真实、可靠,我们聘请了10位国内知名矿产资源评价及矿床地质学领域专家,分别对各种不同类型矿床计算机推理网络模型的三个参数独立打分,然后对打分结果进行统计处理,最终得出每类矿床计算机推理网络模型的三个参数值。

4)以美国地质调查局开发的PROSPECTORⅡ地质专家系统为主要参考模式,采用面向对象的C++语言实现矿床模型计算机推理网络模型及成矿知识规则的推理过程,并首次将神经网络BP模型方法引入专家系统,作为矿床类型判别证据之一,建立数字矿床模型专家系统。

三、数字矿床模型评价系统研究

中国铜矿数字矿床模型矿产资源评价系统软件将以数字矿床原始数据库和数字矿床模型推理网络为基础,以现代GIS高新技术工具为支撑平台,将数字矿床模型专家系统与MRAS矿产资源GIS评价系统有机地结合,通过矿床模型专家系统判别预测区可能存在的矿床类型,借助MRAS系统中定量资源评价工具及人工神经网络模型,利用该类矿床模型中可用于定位的地质要素专题图层,在GIS一体化软件平台上,完成远景区定位及远景区成矿级别优选。软件研究的关键是以数字矿床模型推理网络为理论框架开发数字矿床模型智能软件系统,并建立起数字矿床模型原始数据库与数字矿床模型智能软件系统之间的信息交换机制。

1)以1∶20万地质、地球物理、地球化学、遥感空间数据库为支撑,并建立起与数字矿床模型专家系统的有机联系,分析铜矿床知识模型建模要素特征,确定各类模型中可作为GIS定位图层的地质特征标志,在此基础上开发基于GIS的数字矿床模型定位评价系统,完成远景区定位。

2)开发专家系统与MRAS矿产资源GIS评价软件平台接口程序,实现专家系统与GIS技术融合;分析、研究不同神经网络模型的算法、功能和用途,研制算法软件,用于成矿远景区级别优选,同时也用于专家系统中矿床类型判别。开发的神经网络模型包BP模型、Hopfield模型、Kohonen模型和ART1模型。

四、研究思路及技术路线

建立数字矿床模型的总体研究思路为:以“矿床模型”为核心,建立数字矿床模型专家系统,用以推断评价区的矿床类型;把数字矿床模型专家系统与MRAS矿产资源GIS评价系统有机融合,利用被判定矿床类型中可用于定位的成矿地质要素专题图层,借助MRAS系统中定量资源评价工具及人工神经网络模型,在GIS软件平台上完成成矿远景区定位及远景区级别优选。

本系统三步评价步骤构成三级推理网络(图2-1):第一级推理网络确定区域内可能存在的矿床类型;第二级推理网络确定可能的成矿远景区位置及成矿概率;第三级推理网络进行成矿远景区级别优选。综合起来有如下具体特点:

图2-1 中国铜矿数字矿床模型三级推理网络

1)系统总体框架按矿种、类型、位置及远景区优选顺序进行设计。矿床类型的确定通过数字矿床模型专家推理系统实现。推理过程采用传统的专家系统对话提问方式进行,用户通过屏幕直接选择并辅以输入相关数据完成提问。

2)数字矿床模型知识库中每条规则包含表示该条规则充分性度量和必要性度量的贡献权重概率估值,对于叶子结点(端点证据),则直接由用户对这些地质证据在野外观测时的存在程度(如很可能存在、不大可能存在、不确定等)结果给出可信度值,这些概率估值在系统推理过程中全程参加计算,并最终确定推理得出的可能矿床类型的归类概率。另外,数字矿床模型知识库的知识做到可以随时更新和添加。

3)模型推理机由规则推理网络构成,推理采用正反向混合不确定模糊推理方法,其推理控制策略划分为两个阶段:在第一阶段中,用户首先向系统提供一批原始观测证据,系统将观测证据与系统中存储的各种矿床模型的规则集依次相匹配,找出匹配最好的矿床模型,作为第二阶段考查目标。本阶段的推理方法为从证据到结果的正向推理方法。第二阶段控制策略的目的是为上述己确定的模型寻找用户尚未提供但却最有效的证据。其基本方法是,考查目标模型下那些尚未确定的前提断言,寻找对结论影响最大的前提断言,反向考查对应次级前提断言,直至端点(叶子)前提断言,通过人机交互方式向用户询问,以便从用户处获得新证据;之后,系统再在该结论下面找下一个次大的前提断言,然后再重复调用这一过程。显然,新证据的获得将改变结论目标模型的可信度概率值。第二阶段采用的推理方法为从目标到证据的反向推理方法。

4)成矿位置的定位:在GIS平台上,通过对用户提供的可用于成矿有利地段定位的地学GIS专题图层数据进行数据综合处理,圈定成矿远景地段。具体做法是先将与矿床成矿模型有关的找矿标志地学图层专题提取、圈定出来,并对该研究区生成统一大小的网格单元,然后通过GIS信息查询,获取每个单元中含有的找矿标志信息,找出那些包含全部标志的单元,作为最后的成矿预测有利单元。

5)成矿远景区优选:以自主开发的矿产资源GIS评价系统软件MRAS为辅助工具,在获取空间定位单元的基础上,利用人工神经网络模型,进行进一步的靶区优选,确定成矿远景区级别。

(责任编辑:IT教学网)

更多

推荐Oracle文章