20个基本积分公式(几个积分公式)
24个基本积分公式是什么?
基本公式
1、∫0dx=c
2、∫x^udx=(x^u+1)/(u+1)+c
3、∫1/xdx=ln|x|+c
4、∫a^xdx=(a^x)/lna+c
5、∫e^xdx=e^x+c
6、∫sinxdx=-cosx+c
7、∫cosxdx=sinx+c
8、∫1/(cosx)^2dx=tanx+c
9、∫1/(sinx)^2dx=-cotx+c
不定积分:
不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a0)的积分、含有√(a2+x^2) (a0)的积分、含有√(a^2-x^2) (a0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。
含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
积分的公式有哪些?
基本积分公式如下:
1、牛顿-莱布尼茨公式,又称为微积分基本公式。
2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分。
3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分。
4、斯托克斯公式,与旋度有关。
Dx sin x=cos x,cos x = -sin x,tan x = sec2 x,cot x = -csc2 x,sec x = sec x tan x等等。
f(x)-∫f(x)dx,k-kx,x^2113n-[1/(n+1)]x^(n+1),a^x-a^x/lna,sinx--cosx,cosx-sinx,tanx--lncosx,cotx-lnsinx。
∫kdx=kx+C
∫xadx=xα+1α+1+C
∫1xdx=ln|x|+C
∫sinxdx=cosx+C
cosxdx=sinx+C
∫1cos2xxdx=tanx+C
∫1sin2xxdx=cotx+C
∫axdx=axlna+C
∫exdx=ex+C
∫11+x2dx=arctanx+C
∫11x2√dx=arcsinx+C
∫coshxdx=sinhx+C
∫sinhxdx=coshx+C
∫tanxcosxdx=1cosx+C
∫cotxsinxdx=1sinx+C
积分基本公式
常用的积分公式有
f(x)-∫f(x)dx
k-kx
x^n-[1/(n+1)]x^(n+1)
a^x-a^x/lna
sinx--cosx
cosx-sinx
tanx--lncosx
cotx-lnsinx
扩展资料
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
参考资料积分公式_百度百科