Python数据分析郑丹青答案(python 数据分析 教材)
python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:
我这里下载的包是1.11.3版本,地址是:
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
生成随机数
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
常用方法如下:
下面看看pandas对数据的统计,下面就说说每一行的信息
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
excel表格
依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
读取HTML
依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
下面说说修改图的样式
关于图形类型,有下面几种:
关于颜色,有下面几种:
关于形状,有下面几种:
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
我们还可以画虚线图,代码如下所示:
还可以给图添加上标题,x,y轴的标签,代码如下所示
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
举个例子:
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
Python 金融数据分析:数据可视化
课程简介
本节为 Python 金融数据分析基础课程,将重点介绍使用 matplotlib 制作基本图表的方法,此外,也对较特别的金融常用图表进行了说明。建议初学者认真学习本节内容,已经掌握 Python 基本作图的读者可以直接跳转至金融图表部分。
学习目标
用 matplotlib 做基本的 2D 图表,主要为点线图、散点图、柱状图
用 matplotlib 做金融图表,主要为蜡状图、箱型图
用 matplotlib 做基本的 3D 图表,主要为 3D 曲面图和 3D 散点图
一、平面图表
1、生成一维数据集
《利用Python进行数据分析》epub下载在线阅读全文,求百度网盘云资源
《利用Python进行数据分析》(Wes McKinney)电子书网盘下载免费在线阅读
链接:
提取码:HQUK
书名:利用Python进行数据分析
作者:Wes McKinney
译者:唐学韬
豆瓣评分:8.6
出版社:机械工业出版社
出版年份:2013-11-18
页数:464
内容简介:
还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。
由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。
?将IPython这个交互式Shell作为你的首要开发环境。
?学习NumPy(Numerical Python)的基础和高级知识。
?从pandas库的数据分析工具开始。
?利用高性能工具对数据进行加载、清理、转换、合并以及重塑。
?利用matplotlib创建散点图以及静态或交互式的可视化结果。
?利用pandas的groupby功能对数据集进行切片、切块和汇总操作。
?处理各种各样的时间序列数据。
?通过详细的案例学习如何解决Web分析、社会科学、金融学以及经?济学等领域的问题。
作者简介:
Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社区公认的权威人物之一。开发了用于数据分析的著名开源Python库——pandas,广获用户好评。在创建Lambda Foundry(一家致力于企业数据分析的公司)之前,他曾是AQR Capital Management的定量分析师。
谁有有《利用Python进行数据分析》pdf 谢谢
《Wes-McKinney-利用Python进行数据分析.epub》百度网盘免费下载:
链接:
?pwd=r77v 提取码: r77v
豆瓣读书数据分析-python
豆瓣读书数据分析-python
(思路来自课程老师绿树)刚刚学完python数据分析的课程,决定做一个有关python数据分析的小项目,思来想去,还是决定分析豆瓣的数据,因为豆瓣是python写成的。用python爬虫抓取数据较为方便,比一般网站少很多页面bug问题,而且豆瓣上的数据量大概在million这个量级,算是算太大的,但也不小。正好手里有一份跑出的大概300多万的数据,直接开始分析。
首先导入数据,将数据赋给一个dataframe,取名为douban
douban=pd.read_table("douban.dat",sep="::",names=["user","book","rate"])
看一下这个数据的描述?
总共3648104行,其他的诸如平均数,中位数的值,是豆瓣书籍的链接后缀,并无实际意义。
然后关于豆瓣读书用户
user_count=douban.groupby('user').count()
user_count=user_count.sort('book',ascending=False)
、我们发现共有38万多读者,计数最多的一位eastwolf东狼,真的很厉害,一共写了4000多的书评。不过我们不排除这是个机器人或者公众号,因为4000度书评,就算一天看一本书,也要写11年,而豆瓣创建才不过11年。有点假,不过这个问题我们暂且不谈,仅从数据来看,第一名最爱读书的书霸,就是eastwolf了,大家鼓掌。
然后我们再来看一下书籍的信息
看一下描述
最受欢迎的书有2071个书评,平均每本书大概有45个书评。
看一下具体情况
我们挑出书评最多的10本,找到图片,就是以下这10本书
可以发现由于不同出版社不同翻译的问题,10本书实际是4本,豆瓣果然是文艺青年聚集地,《小王子》《追风筝的人》《活着》几乎就是文艺青年必备了。?
? 豆瓣做为文艺青年聚集地,本身用户属于素质较高的群体。里面分很多小组,读书,电影,音乐,算是给大家找志同道合之友的好地方。关于读书这个方面,在大家都很爱读书的基础上,我们可以用户进行聚类分析。依靠的根据是对书籍的打分,这样来计算不同用户之间的距离。因为读的书目越相似,对同一本书打分结果越接近,说明价值观越相同,找出这样的相似者,就能给用户推荐一下潜在的‘同志’,算是给豆瓣增加一个社交功能了。
? 首先我们把用户信息和书本信息结合,因为考虑到大部分书籍用户之间交集为空,而且我的电脑的处理能力有限,所以截取了用户和书籍的前100进行分析,这样得到一个新的dataframe
然后我们建立邻近性矩阵
ubrcore=doubancore.pivot('user','book','rate')?
即使在取前100的条件下,依然大部分是空白,为了能够计算,我们把空白处替换成0.
ubrcore1=ubrcore.fillna(value=0)
然后对要进行距离计算,由于本身对书本的打分在1到5之间,纯粹的大小差距并不大,所以我们更多的考虑在方向上的差异,所以用余弦距离来反应不同用户之间的差异性。
?构建公式,并将计算结果给userdistdf这个dataframe
Userdistdf结果如下
最像用户的就是他自己,余弦距离都是1。其他人只能是部分相像,果然人生得一知己难啊。不过知己找不到,我们可以给用户找10个部分相像的‘同志’
构建函数
试一下
Bingo,成功!!!!
这样,我们可以为用户qdmimi19810920找到了10个志同道合的‘同志’了。
Python数据挖掘006-数据集成
数据集成就是间来源于多个不同数据源的数据合并存放在一个一致的数据存储(比如数据仓库)中的过程。
不同数据源的数据之间可能会有不匹配或属性重复,所以要考虑实体识别问题和属性冗余问题。
是指从不同数据源识别出现实世界的实体,它的任务是统一不同源数据的矛盾之处。
常见形式有:同名异义,异名同义,单位不统一等。
实体识别问题就是检测和解决这些冲突。
数据冗余,比如:同一属性出现多次,同一属性命名不一致导致重复等。
冗余属性要先检测,再删除掉。冗余属性用相关性分析也能判断出来。
参考资料:
《Python数据分析和挖掘实战》张良均等