数据库性能优化JOIN方法说明
看到很多朋友对数据库的理解、认识还是没有突破一个瓶颈,而这个瓶颈往往只是一层窗纸,越过了你将看到一个新世界。
04、05年做项目的时候,用SQL Server 2000,核心表(大部分使用频繁的关键功能每次都要用到)达到了800万数据量,很早以前查过一些相关表,有的达到了3000多万,磁盘使用的光纤盘,100G空间,每周必须备份转移数据,否则100G空间一周会满掉,这个系统几年来,目前仍然保持非常良好的性能。还听说过朋友的SQL Server 2000数据库工作在几十TB的环境下,高并发量,对这种级别的驾驭能力我还是差的很遥远。
想当年,也是一提SQL Server,就觉得它的性能没法跟Oracle相比,一提到大数据处理就想到Oracle。自己一路走来,在本地blog上记录了很多优化方面的post,对的错的都有,没有时间系列的整理出来,这篇文章将join方法的概念稍微整理在一起,给大家个参考。通过查资料了解里面提到的各种概念,在实际中不断验证总结,完全可以对数据库一步步深入理解下去的。
我只对SQL Server 2000比较了解,但这并不阻碍我在Oracle、MySql进行SQL调优、产品架构,因为在数据库理论原理上,各大数据库基本出入不大,对数据库的深入理解,也不会影响你架构设计思想变坏,相反给你带来的是更深层次的思考。
关于执行计划的说明
在SQL Server查询分析器的Query菜单中选择Show Execution Plan,运行SQL查询语句,在结果窗口中有Grid、Execution Plan、Messages三个Tab。看图形形式的执行计划,顺序是从右到左,这也是执行的顺序。执行计划中的每一个图标表示一个操作,每一个操作都会有一个或多个输入,也会有一个或多个输出。输入和输出,有可能是一个物理数据表、索引数据结构,或者是执行过程中的一些中间结果集/数据结构。鼠标移动到图标上,会显示这个操作的具体信息,例如逻辑和物理操作名称、记录的数量和大小、I/O成本、CPU成本、操作的具体表达式(参数Argument)。鼠标移动到连接箭头上,会显示箭头起始端的操作输出结果集的记录数、记录的大小,一般情况下可以将这个输出结果集理解为箭头结束端的输入。
另外关于执行计划的一些补充说明:1. 执行计划中显示的信息,都是一个“评估”的结果,不是100%准确的信息,例如记录数量是取自统计信息,I/O成本、CPU成本来自执行计划生成过程中基于统计信息等得出的评估结果。2. 执行计划不一定准确,一方面受SQL Server维护的统计信息准确性的影响,另一方面SQL语句编译时刻与执行时刻的环境(内存使用状况、CPU状况等)可能会不一样。
关于统计信息、I/O成本和CPU成本的评估、SQL语句的编译和执行过程,这里不再深入。另外尽管执行计划不一定准确,但它仍是SQL语句分析最重要的依据,因为你可以理解为,绝大部分情况下,SQL Server是以这种方式来执行的。