python混淆矩阵代码(python中混淆矩阵)
Python hmmlearn中的混淆矩阵是怎么表示的
hmmlearn这个库有三种模型,分别是Gaussian,Multinomial和GMMHMM。这三种模型对应的就是三种emission matrix(即混淆矩阵,也就是隐状态到观察态的概率)。Gaussian就是说混淆矩阵是一个高斯分布,即观察态是连续的。Multinomiual就是说混淆矩阵事一个Multibimiual distribution,即观察态势离散的。GMMHMM则是说混淆矩阵是遵循gaussinan mixture 分布,也是连续的。
题主问如何把混淆矩阵输入到模型里面。首先你要确定你的混淆矩阵的类型。对于Gaussian类型,就是把你希望的 mean和variance值放到模型里面。我就直接把文档里面的例子搬过来,例子里是建立了一个高斯分布的隐马尔科夫模型。
import numpy as np
from hmmlearn import hmm
#一个隐马尔科夫模型由(p向量,状态转移矩阵,混淆矩阵)来定义。
startprob = np.array([0.6, 0.3, 0.1])
# 定义初始状态的概率
transmat = np.array([[0.7, 0.2, 0.1], [0.3, 0.5, 0.2], [0.3, 0.3, 0.4]])#定义转移矩阵的概率
means = np.array([[0.0, 0.0], [3.0, -3.0], [5.0, 10.0]])
#定义混淆矩阵的均值
covars = np.tile(np.identity(2), (3, 1, 1))# 定义混淆矩阵的方差
model = hmm.GaussianHMM(3, "full", startprob, transmat)# 定义一个混淆矩阵为高斯分布的隐马尔科夫模型。 这里‘full’的意思就是说你输入的方差矩阵每个元素都给出了,不是一个只是对角线上的元素为0的矩阵
model.means_ = means
model.covars_ = covars#把你希望的均值方差输入你定义的模型里面,到此你就把混淆矩阵输入进模型了
X, Z = model.sample(100)
对于Multinomial 和 GMM,我还没用,不过Multinomial应该是需要你自己手动输入隐状态到观察态的概率的,而GMM应该是和Gaussian类型类似,只是需要多输入一个权重因子。
对于第二个问题,covariance_type意思是你的混淆矩阵的covariance matrix是什么类型,比如若只是对角线上的元素不为0,则把covariance_type设为‘diag’。
python里面一些简单代码的含义是什么?(题主零基础)
主要就两个文件 一个是sample的名字 labels.txt
还有个放矩阵 predict.txt 两列,一列pre 二列true
放矩阵那里他会调confusion_matrix自己算,如果你自己算好了不需要算,那代码就要改
confusion_matrix介绍见
这东西用R画快多了,python的也只是刚才看了下介绍,应该没啥大问题
python是否有绘制混淆矩阵的函数,怎么来实现
#?-*-?coding:?UTF-8?-*-
"""绘制混淆矩阵图"""
import?matplotlib.pyplot?as?plt
from?sklearn.metrics?import?confusion_matrix
def?confusion_matrix_plot_matplotlib(y_truth,?y_predict,?cmap=plt.cm.Blues):
????"""Matplotlib绘制混淆矩阵图
????parameters
????----------
????????y_truth:?真实的y的值,?1d?array
????????y_predict:?预测的y的值,?1d?array
????????cmap:?画混淆矩阵图的配色风格,?使用cm.Blues,更多风格请参考官网
????"""
????cm?=?confusion_matrix(y_truth,?y_predict)
????plt.matshow(cm,?cmap=cmap)??#?混淆矩阵图
????plt.colorbar()??#?颜色标签
????for?x?in?range(len(cm)):??#?数据标签
????????for?y?in?range(len(cm)):
????????????plt.annotate(cm[x,?y],?xy=(x,?y),?horizontalalignment='center',?verticalalignment='center')
????plt.ylabel('True?label')??#?坐标轴标签
????plt.xlabel('Predicted?label')??#?坐标轴标签
????plt.show()??#?显示作图结果
if?__name__?==?'__main__':
????y_truth?=?[1,?0,?1,?1,?1,?1,?1,?1,?1,?1,?0,?0,?0,?0,?0]
????y_predict?=?[1,?0,?0,?1,?0,?1,?1,?1,?1,?1,?0,?1,?0,?1,?0]
????confusion_matrix_plot_matplotlib(y_truth,?y_predict)
python评分卡之LR及混淆矩阵、ROC
import pandas as pd
import numpy as np
from sklearn import linear_model
# 读取数据
sports = pd.read_csv(r'C:\Users\Administrator\Desktop\Run or Walk.csv')
# 提取出所有自变量名称
predictors = sports.columns[4:]
# 构建自变量矩阵
X = sports.ix[:,predictors]
# 提取y变量值
y = sports.activity
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)
# 利用训练集建模
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
# 返回模型的各个参数
print(sklearn_logistic.intercept_, sklearn_logistic.coef_)
# 模型预测
sklearn_predict = sklearn_logistic.predict(X_test)
# 预测结果统计
pd.Series(sklearn_predict).value_counts()
-------------------------------------------------------------------------------------------------------------------------------------------
# 导入第三方模块
from sklearn import metrics
# 混淆矩阵
cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])
cm
Accuracy = metrics.scorer.accuracy_score(y_test, sklearn_predict)
Sensitivity = metrics.scorer.recall_score(y_test, sklearn_predict)
Specificity = metrics.scorer.recall_score(y_test, sklearn_predict, pos_label=0)
print('模型准确率为%.2f%%:' %(Accuracy*100))
print('正例覆盖率为%.2f%%' %(Sensitivity*100))
print('负例覆盖率为%.2f%%' %(Specificity*100))
-------------------------------------------------------------------------------------------------------------------------------------------
# 混淆矩阵的可视化
# 导入第三方模块
import seaborn as sns
import matplotlib.pyplot as plt
# 绘制热力图
sns.heatmap(cm, annot = True, fmt = '.2e',cmap = 'GnBu')
plt.show()
------------------------------------------------------------------------------------------------------------------------------------------
# 绘制ROC曲线
# 计算真正率和假正率
fpr,tpr,threshold = metrics.roc_curve(y_test, sm_y_probability)
# 计算auc的值?
roc_auc = metrics.auc(fpr,tpr)
# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
plt.show()
-------------------------------------------------------------------------------------------------------------------------------------------
#ks曲线? ?链接:? 风控数据分析学习笔记(二)Python建立信用评分卡 -
fig, ax = plt.subplots()
ax.plot(1 - threshold, tpr, label='tpr')# ks曲线要按照预测概率降序排列,所以需要1-threshold镜像
ax.plot(1 - threshold, fpr, label='fpr')
ax.plot(1 - threshold, tpr-fpr,label='KS')
plt.xlabel('score')
plt.title('KS Curve')
plt.ylim([0.0, 1.0])
plt.figure(figsize=(20,20))
legend = ax.legend(loc='upper left')
plt.show()
Python sklearn.metrics模块混淆矩阵常用函数
1.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
参数分别为y实际类别、预测类别、返回值要求(True返回正确的样本占比,false返回的是正确分类的样本数量)
eg:
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
accuracy_score(y_true, y_pred)
0.5
accuracy_score(y_true, y_pred, normalize=False)
2.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)
参数:真是类别,预测类别,目标类别名称
eg:
3.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
输出为混淆矩阵
eg:
太多了,写3个常用的吧,具体参考help(metrics)
defcm_plot(y,yp):#参数为实际分类和预测分类
fromsklearn.metricsimportconfusion_matrix
#导入混淆矩阵函数
cm = confusion_matrix(y,yp)
#输出为混淆矩阵
importmatplotlib.pyplotasplt
#导入作图函数
plt.matshow(cm,cmap=plt.cm.Greens)
# 画混淆矩阵图,配色风格使用cm.Greens
plt.colorbar()
# 颜色标签
forxinrange(len(cm)):
foryinrange(len(cm)):
plt.annotate(cm[x,y],xy=(x,y),horizontalalignment='center',verticalalignment='center')
#annotate主要在图形中添加注释
# 第一个参数添加注释
# 第一个参数是注释的内容
# xy设置箭头尖的坐标
#horizontalalignment水平对齐
#verticalalignment垂直对齐
#其余常用参数如下:
# xytext设置注释内容显示的起始位置
# arrowprops 用来设置箭头
# facecolor 设置箭头的颜色
# headlength 箭头的头的长度
# headwidth 箭头的宽度
# width 箭身的宽度
plt.ylabel('True label')# 坐标轴标签
plt.xlabel('Predicted label')# 坐标轴标签
returnplt
#函数调用
cm_plot(train[:,3],tree.predict(train[:,:3])).show()