python数据分析案例报告总结(python数据分析经典案例)

http://www.itjxue.com  2023-04-01 01:23  来源:未知  点击次数: 

2020年世界各国总人口数据分析(python)

学习python尝试的第一个分析项目,分析思路还是有些初级,重点在对工具的练习上吧~

练习了数据分析维度的思考,熟悉了数据清洗方法、数据分析方法及可视化等内容。

源数据中的数据说明如下:

●Country (or dependency)-包含其他国家/地区的名称(235个国家/地区)

●Population (2020)-包含不同国家的人口

●Yearly Change-每年的人口变化

●Net Change-人口的净变化

●Density (P/Km2)-人口密度

●Land Area (Km2)-以平方公里为单位的土地面积

●Migrants (net)-表国家的移民

●Fert. Rate-各个国家的生育率或增长率

●Med. Age-该国家的平均年龄(中年或平均年龄)寿命

●Urban Pop %-城市人口比例

●World Share-各个国家对世界份额贡献的人口

2、提供分析思路如下:

观察到列标签名比较乱(包括一些小括号、空格、百分号),重命名调整下~

--》查看字段属性

根据info和describe方法返回的结果,意识到很多数据列没有返回结果,原因是字段类型不为数值型,且存在“脏数据”,需解决的脏数据问题如下:

①字段值中的“%”及“N.A.”符号需去掉;

②Migrants列存在值缺失;

④“YearlyChange”?、“Fert.Rate?”、“Med.Age”、“UrbanPop”、“WorldShare”字段属性均不为数值型,需要转换;

--》处理百分号:

查看含有“N.A.”的列,这里利用“df==“N.A.”返回一个值都为bool类型的dataframe,用describe方法可以观察出包含特定值字段的列标签;

通过观察得出,“Fert.Rate?”、“Med.Age”、“UrbanPop” 三列值中含有“N.A.”字符;

此案例中的的“N.A.”字符串均考虑用0替换;

--》处理“N.A.”字符:

检查结果显示清洗成功;

--》接下来处理“Migrants”列的缺失值(用0值填充):

--》完成数据类型转换:

至此数据清洗完成~

按照三部分展开:

①人口总数分析

分析方向:考察国家人口总数前10名及倒数10名的国家排名情况,考察前十名国家人口和国土面积与各自全球总数的占比情况

--》绘图准备

--》准备人口总数前10及倒数10名国家的数据,并分别绘制条形图

生成的排名结果如上图;

可以看到前10名国家中:有5个(China、India、Indonesia、Bangladesh、Pakistan)来自亚洲,2个(United States、Mexico)来自北美,1个(Brazil)来自南美,一个(Russia)来自欧洲,一个(Nigeria)来自非洲

针对人口总数前10名的国家,分别统计人口总数和陆地总面积占全球总数的比例

绘图结果如下:

●由此可见,这10个国家的陆地总面积占总数的40%,却居住着世界60%的人口;

②人口变化率分析

分析方向:观察各国人口增长率分布情况,以及人口增长率前5名及倒数5名的国家分布情况

--》先观察下各国人口增长率的分布?

?●绝大部分国家的人口增长率在0~3%之间,少数国家的人口增长率属于负值;

--》接下来提取人口增长率前5名和倒数5名的国家,绘制条形图:

?●可以看到人口增长率最高的5个国家里,有4个属于非洲,另外1个在亚洲;人口增长率最低的5个国家,有3个在欧洲地区,另外2个则处于大洋洲和美洲地区;

③各国人口密度分析

分析方向:考察各国人口密度前10名的国家,并且按照人口密度划分等级,考察不同等级的分布情况;

--》绘制人口密度前10名的国家如下:

●上图可知,人口密度国家最高的国家为摩纳哥,其次为中国澳门、新加坡;

把人口密度划分为4个等级:

level_1 人口密集区 >100人/平方千米

level_2? 人口中等区 25~100人/平方千米

level_3? 人口稀少区 1~25人/平方千米

level_4? 人口极稀区 <1人/平方千米

--》按照以上等级规则对人口密度数据进行分区,并新增人口密度等级标签,完成后绘制柱形图;

●由上图可知,绝大部分国家处于人口中等区和人口密集区;

分析方向:考察净移民总数最多的5名国家

--》绘制净移民总数前5名的国家如下:

●前五个国家除了土耳其,都是高度发达的国家;由于美国强大的综合实力,毫无悬念地成为了人们心目中移民的第一选择。

分析方向:

①老龄化程度通常可以用年龄中位数来衡量,考察老龄化程度最高的5个国家

②分析老龄化和城市人口比例的相关性

--》绘制老龄化程度最高的5个国家如下:

●日本、马提尼克、意大利、葡萄牙、希腊为老龄化程度最高的五个国家;

-》接下来考察国家的城市人口比例和年龄中位数的相关性,这里采用一元回归模型进行分析;

-》绘制出来的线性关系如下:

●可以看出国家城市人口比例与老龄化程度存在一定的正相关;

由以上一些简单的分析,可总结出以下结论:

①相比较其他地区,亚非地区的人口数量更多,整体来看人口数量的国家分布非常不平衡,人口数量前10名的国家已经占了全球总人数的60%;

②80%以上国家人口的增长率在0~3%之间,大约10%的国家的人口增长率为负;亚非地区的人口增长率整体偏高;

③80%以上国家均属于人口中等区和人口密集区,即人口密度大于25人/平方千米;

④移民群众倾向于选择美国和其他一些欧洲的发达国家作为移民对象;

⑤国家城市人口比例与老龄化程度存在一定的正相关;

Python数据分析(八):农粮组织数据集探索性分析(EDA)

这里我们用 FAO(Food and Agriculture Organization) 组织提供的数据集,练习一下如何利用python进行探索性数据分析。

我们先导入需要用到的包

接下来,加载数据集

看一下数据量,

看一下数据的信息,

我们先来看一下variable,variable_full这两列的信息,

看一下统计了多少国家,

看一下有多少个时间周期,

看一下时间周期有哪些,

我们看一下某一列某个指标的缺失值的个数,比如variable是total_area时缺失值的个数,

我们通过几个维度来进行数据的分析:

我们按照上面的处理继续,现在我们想统计一下对于一个时间周期来说,不同国家在这个周期内的变化情况,

我们也可以按照国家分类,查看某个国家在不同时期的变化,

我们还可以根据属性,查看不同国家在不同周期内的变化情况,

我们还可以给定国家和指标,查看这个国家在这个指标上的变化情况,

我们还有region(区域)没有查看,我们来看一下:

通过上图可以看出,区域太多,不便于观察,我们可以将一些区域进行合并。减少区域数量有助于模型评估,可以创建一个字典来查找新的,更简单的区域(亚洲,北美洲,南美洲,大洋洲)

我们来看一下数据变化,

紧接着上面的数据处理,我们重新导入一下包,这次有一些新包,

我们看一下水资源的情况,

通过上图可以看出只有一小部分国家报告了可利用的水资源总量,这些国家中只有极少数国家拥有最近一段时间的数据,我们将删除变量,因为这么少的数据点会导致很多问题。

接下来我们看一下全国降雨指数,

全国降雨在2002年以后不再报到,所以我们也删除这个数据,

我们单独拿出一个洲来进行分析,举例南美洲,我们来看一下数据的完整性,

我们也可以指定不同的指标,

接下来,我们使用 pandas_profiling 来对单变量以及多变量之间的关系进行统计一下,

这里我们要计算的是,比如

我们按照 rural_pop 从小到大进行排序,发现的确有几个国家的农村人口是负数,

人口数目是不可能小于0,所以这说明数据有问题,存在脏数据,如果做分析预测时,要注意将这些脏数据处理一下。

接下来我们看一下偏度,我们规定,

正态分布的偏度应为零,负偏度表示左偏,正偏表示右偏。

偏度计算完后,我们计算一下峰度, 峰度也是一个正态分布,峰度不能为负,只能是正数 ,越大说明越陡峭,

接下来我们看一下,如果数据分布非常不均匀该怎么办呢,

上图是2013-2017年国家总人数的分布,通过上图我们发现,人口量少于200000(不考虑单位)的国家非常多,人口大于1200000的国家非常少,如果我们需要建模的话,这种数据我们是不能要的。这个时候我们应该怎么办呢?

通常,遇到这种情况,使用 log变换 将其变为正常。 对数变换 是数据变换的一种常用方式,数据变换的目的在于使数据的呈现方式接近我们所希望的前提假设,从而更好的进行统计推断。

接下来,我们用log转换一下,并看一下它的偏度和峰值,

可以看出偏度下降了很多,减少了倾斜。

可以发现峰度也下降了,接下来我们看一下经过log转换后的数据分布,

虽然数据还有一些偏度,但是明显好了很多,呈现的分布也比较标准。

首先我们先来看一下美国的人口总数随时间的变化,

接下来,我们查看北美洲每个国家人口总数随着时间的变化,

这个时候我们发现,一些国家由于人口数量本身就少,所以整个图像显示的不明显,我们可以改变一下参照指标,那我们通过什么标准化?我们可以选择一个国家的最小、平均、中位数、最大值...或任何其他位置。那我们选择最小值,这样我们就能看到每个国家的起始人口上的增长。

我们也可以用热度图来展示,用颜色的深浅来比较大小关系,

接下来我们分析一下水资源的分布情况,

我们可以进行一下log转换,

我们用热度图画一下,

连续值可以画成散点图,方便观看,

我们来看一下随着季节变化,人均GDP的变化情况,

相关程度:

相关度量两个变量之间的线性关系的强度,我们可以用相关性来识别变量。

现在我们单独拿出来一个指标分析是什么因素与人均GDP的变化有关系,正相关就是积极影响,负相关就是消极影响。

当我们在画图的时候也可以考虑一下利用bined设置一下区间,比如说连续值我们可以分成几个区间进行分析,这里我们以人均GDP的数量来进行分析,我们可以将人均GDP的数据映射到不同的区间,比如人均GDP比较低,比较落后的国家,以及人均GDP比较高,比较发达的国家,这个也是我们经常需要的操作,

做一下log变换,这里是25个bin

我们指定一下分割的标准,

我们还可以看一下人均GDP较低,落后国家的内部数据,下面我们看一下内部数据分布情况,用boxplot进行画图,

对于这部分的分布,我们还可以统计看一下其他指标,如下图所示,我们还可以看一下洪水的统计信息,

Python数据分析在数学建模中的应用汇总(持续更新中!)

1、Numpy常用方法使用大全(超详细)

1、Series和DataFrame简单入门

2、Pandas操作CSV文件的读写

3、Pandas处理DataFrame,Series进行作图

1、Matplotlib绘图之属性设置

2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图

1、层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)

2、Python实现TOPSIS分析法(优劣解距离法)

3、Python实现线性插值和三次样条插值

4、Python实现线性函数的拟合算法

5、Python实现统计描述以及计算皮尔逊相关系数

6、Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径

自学3年Python的我成了数据分析师,总结成一张思维导图

大家好,我是一名普通毕业生,现就职于某互联网公司。之前很多同学问我“ 为什么自学3年Python,最后却成为了数据分析师 ?”

首先肯定是数据分析师的前景和薪资条件,打动了我

下面是我的学习之路,附带一些必备学习的资料,可以 免费领取 ,相信感兴趣的你看完也可以找到自己的方向。

众所周知:Python是当今最火的编程语言之一,各大招聘网站上都会要求求职者会这门语言,并且它很容易上手,业务面宽泛,像Web网页工程师、网络爬虫工程师、自动化运维、自动化测试、 游戏 开发、数据分析、AI等等。

我们首先明确一个大的方向,知道自己以后要做什么。因为我是统计学专业,所以我会选择从事数据分析行业,那么 用Python做数据分析成了一个最佳选择 。

要想使用Python做数据分析,首先就应该知道“ 数据分析的流程是怎样的? ”

我这次特地总结了一张 思维导图 给大家,点击放大看更清楚哦。

(点击查看高清大图)

基于此,我这里将我以前学习过程中用过的电子书(技能类、统计类、业务类),还有相关视频免费分享给大家,省去了你们挑选视频的时间,也希望能够对你们的学习有所帮助。

PS:我总结的资料有点多哦,差不多有4G,大家一定要给你的百度云盘空出位置来哦!

如果遇到一些环境配置,还有一些错误异常等bug,资料就显得不太够用,这时就需要找到老师,给我们特别讲解。

或者是想 快速学习 数据分析领域知识,不妨先找一找 直播课 看看, 了解当下最贴合实际的学习思路,确定自己的方向。

Day1 20:00量化交易入门:

用Python做股票指标分析和买卖时机选择

场景工具:Python工具分解RSI指标流程处理: 业务场景分析建模和可视化学习成果:使用RSI指标模型做买卖点搜索、交易回溯实战案例:分析A股数据模型,制定投资策略

Day2 20:00职场晋升必备:

制作酷炫报表,4步带你学习数据可视化

场景工具:用Tableau学习如何管理数据流程处理: 利用业务拆解找到数据指标、进行数据可视化学习成果:高效的对数据驱动型业务作出精准决策实战案例:利用可视化工具构建 旅游 客流量趋势地图

Day3 20:00量化交易进阶:

0基础用Python搭建量化分析平台

场景工具:利用pandas工具分解KDJ指标构成流程处理: 交易数据爬取,业务场景分析建模和可视化分析结果:用KDJ指标模型对比特币行情买卖点搜索交易回溯实战项目:掌握根据数据指数和分析工具寻找虚拟货币买卖原理

他们 每周都会定期分享 一些 干货 供大家学习参考,对学习很有帮助。

(深度学习DeepLearning.ai实验室认证)

微软/甲骨文/Cloudera等公司颁发的数据分析证书)

4步学会数据可视化,办公效率提高三倍

(更多精彩内容 等你解锁)

标普100案例分析 —— 带着Python玩金融(5)

本文将带着你使用Python对标普100数据进行简单的分析,你会学到:

标准普尔100指数 用来衡量大公司的股票表现,它由多个行业的100家主要公司构成。2017年标普100在各行业的比例如下图所示。

本文将要分析的数据如下表所示,它由四列数据构成,分别是公司名(Name),行业(Sector),股价(Price)和每股盈余(EPS)。

我们将这四列数据分别存储在四个Python列表中。

先来用切片的方法观察下数据。比如查看前四家公司的名称。

或者输出最后一家公司的所有信息。

市盈率 (Price to Earnings ratio),也称股价收益比率,由股价除以每年度每股盈余(EPS)得到,它是用来衡量股价水平是否合理的指标之一。

为了方便计算市盈率,我们首先将数据从Python列表类型转换为NumPy数组。

NumPy数组的优势是它可以直接对数组进行运算,而这一点Python列表是做不到的。比如计算市盈率 pe ,我们可以直接将数组 prices 除以数组 earnings 。

接下来我们就具体行业来进行分析,比如对于IT行业,我们首先需要筛选出哪些公司属于这一行业。

用同样的方法,筛选出必需消费品行业的公司和市盈率。

筛选出IT和必需消费品行业的数据后,我们来计算这两个行业市盈率的均值和标准差。

首先用散点图来观察这两个行业中每一家公司的市盈率。这里使用Python中常用的绘图工具包 matplotlib 。

我们注意到,上图的右上角有一IT公司的市盈率特别高。若某股票的市盈率高于同类股票,往往意味着该股有较高的增长预期。所以让我们进一步来观察IT行业的市盈率分布,在这里直方图可以用来查看数据的分布情况。

现在可以更直观的看到在直方图的右侧有一离群值,它具有很高的市盈率。我们可以使用布尔索引找到这家市盈率很高的公司。

注:本文是 DataCamp 课程 Intro to Python for Finance 的学习笔记。

python数据统计分析

1. 常用函数库

? scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。

?scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。

2. 小样本数据的正态性检验

(1) 用途

?夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显著水平时表示其不符合正态分布。

?正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。

(2) 示例

(3) 结果分析

?返回结果 p-value=0.029035290703177452,比指定的显著水平(一般为5%)小,则拒绝假设:x不服从正态分布。

3. 检验样本是否服务某一分布

(1) 用途

?科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

(2) 示例

(3) 结果分析

?生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显著水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显著性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

4.方差齐性检验

(1) 用途

?方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。

(2) 示例

(3) 结果分析

?返回结果 p-value=0.19337536323599344, 比指定的显著水平(假设为5%)大,认为两组数据具有方差齐性。

5. 图形描述相关性

(1) 用途

?最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。

(2) 示例

(3) 结果分析

?从图中可以看到明显的正相关趋势。

6. 正态资料的相关分析

(1) 用途

?皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

(2) 示例

(3) 结果分析

?返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value0.05时,可以认为两变量存在相关性。

7. 非正态资料的相关分析

(1) 用途

?斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

(2) 示例

(3) 结果分析

?返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显著。

8. 单样本T检验

(1) 用途

?单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。

(2) 示例

(3) 结果分析

?本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显著水平(一般为5%)小,认为差异显著,拒绝假设;第二列2.83088106e-01大于指定显著水平,不能拒绝假设:服从正态分布。

9. 两独立样本T检验

(1) 用途

?由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。

(2) 示例

(3) 结果分析

?返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显著水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。

10. 配对样本T检验

(1) 用途

?配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。

(2) 示例

(3) 结果分析

?返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显著水平(一般为5%)大,不能拒绝假设。

11. 单因素方差分析

(1) 用途

?方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显著性检验。方差分析主要是考虑各组之间的平均数差别。

?单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显著差异。

?当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。

(2) 示例

(3) 结果分析

?返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。

12. 多因素方差分析

(1) 用途

?当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。

(2) 示例

(3) 结果分析

?上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。

13. 卡方检验

(1) 用途

?上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。

?基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

(2) 示例

(3) 结果分析

?卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显著水平(一般5%)大,不能拒绝原假设,即相关性不显著。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。

14. 单变量统计分析

(1) 用途

?单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。

?单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

?此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

15. 多元线性回归

(1) 用途

?多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。

(2) 示例

(3) 结果分析

?直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显著性。

16. 逻辑回归

(1) 用途

?当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。

(2) 示例

(3) 结果分析

?直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义。

(责任编辑:IT教学网)

更多

推荐网络工程师文章