python大数据分析课程设计(python大数据分析教程)

http://www.itjxue.com  2023-04-05 05:20  来源:未知  点击次数: 

利用Python分析处理数据。学校大数据课程,十几年第一次开,有没有精通计算机的哥哥姐姐帮助一下。

想要系统学习数据分析,建议一定要看的数据分析圣经《利用python进行数据分析》,这本书有理论有实践,深入浅出,层层递进,适合刚入门的数据分析小白,或者还有另外一本《python机器学习基础教程》,也是比较入门级的,不过更偏向于机器学习的方向,但是也是涉及比较基础的内容,可以作为进阶来学习。手打不容易,以上回答如有帮助请采纳,谢谢!

Python大数据, 一些简单的操作

#coding:utf-8

#file: FileSplit.py

import os,os.path,time

def FileSplit(sourceFile, targetFolder):

sFile = open(sourceFile, 'r')

number = 100000 #每个小文件中保存100000条数据

dataLine = sFile.readline()

tempData = [] #缓存列表

fileNum = 1

if not os.path.isdir(targetFolder): #如果目标目录不存在,则创建

os.mkdir(targetFolder)

while dataLine: #有数据

for row in range(number):

tempData.append(dataLine) #将一行数据添加到列表中

dataLine = sFile.readline()

if not dataLine :

break

tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + str(fileNum) + ".txt")

tFile = open(tFilename, 'a+') #创建小文件

tFile.writelines(tempData) #将列表保存到文件中

tFile.close()

tempData = [] #清空缓存列表

print(tFilename + " 创建于: " + str(time.ctime()))

fileNum += 1 #文件编号

sFile.close()

if __name__ == "__main__" :

FileSplit("access.log","access")

#coding:utf-8

#file: Map.py

import os,os.path,re

def Map(sourceFile, targetFolder):

sFile = open(sourceFile, 'r')

dataLine = sFile.readline()

tempData = {} #缓存列表

if not os.path.isdir(targetFolder): #如果目标目录不存在,则创建

os.mkdir(targetFolder)

while dataLine: #有数据

p_re = re.compile(r'(GET|POST)\s(.*?)\sHTTP/1.[01]',re.IGNORECASE) #用正则表达式解析数据

match = p_re.findall(dataLine)

if match:

visitUrl = match[0][1]

if visitUrl in tempData:

tempData[visitUrl] += 1

else:

tempData[visitUrl] = 1

dataLine = sFile.readline() #读入下一行数据

sFile.close()

tList = []

for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):

tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + "_map.txt")

tFile = open(tFilename, 'a+') #创建小文件

tFile.writelines(tList) #将列表保存到文件中

tFile.close()

if __name__ == "__main__" :

Map("access\\access.log1.txt","access")

Map("access\\access.log2.txt","access")

Map("access\\access.log3.txt","access")

#coding:utf-8

#file: Reduce.py

import os,os.path,re

def Reduce(sourceFolder, targetFile):

tempData = {} #缓存列表

p_re = re.compile(r'(.*?)(\d{1,}$)',re.IGNORECASE) #用正则表达式解析数据

for root,dirs,files in os.walk(sourceFolder):

for fil in files:

if fil.endswith('_map.txt'): #是reduce文件

sFile = open(os.path.abspath(os.path.join(root,fil)), 'r')

dataLine = sFile.readline()

while dataLine: #有数据

subdata = p_re.findall(dataLine) #用空格分割数据

#print(subdata[0][0]," ",subdata[0][1])

if subdata[0][0] in tempData:

tempData[subdata[0][0]] += int(subdata[0][1])

else:

tempData[subdata[0][0]] = int(subdata[0][1])

dataLine = sFile.readline() #读入下一行数据

sFile.close()

tList = []

for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):

tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(sourceFolder,targetFile + "_reduce.txt")

tFile = open(tFilename, 'a+') #创建小文件

tFile.writelines(tList) #将列表保存到文件中

tFile.close()

if __name__ == "__main__" :

Reduce("access","access")

python做数据分析,有哪些视频教程

链接:

提取码:7234

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

Python 金融数据分析:数据可视化

课程简介

本节为 Python 金融数据分析基础课程,将重点介绍使用 matplotlib 制作基本图表的方法,此外,也对较特别的金融常用图表进行了说明。建议初学者认真学习本节内容,已经掌握 Python 基本作图的读者可以直接跳转至金融图表部分。

学习目标

用 matplotlib 做基本的 2D 图表,主要为点线图、散点图、柱状图

用 matplotlib 做金融图表,主要为蜡状图、箱型图

用 matplotlib 做基本的 3D 图表,主要为 3D 曲面图和 3D 散点图

一、平面图表

1、生成一维数据集

(责任编辑:IT教学网)

更多

推荐程序员考试文章