矩阵相乘,矩阵相乘等于0
矩阵的乘法是什么?
乘法运算:两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。
除法运算:一般不说矩阵的除法。都是讲的矩阵求逆。
矩阵乘法的注意事项
1、当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC)。
乘法左分配律:(A+B)C=AC+BC 。
乘法右分配律:C(A+B)=CA+CB 。
对数乘的结合性k(AB)=(kA)B=A(kB)。
矩阵乘法怎么算?
比如乘法AB
一、
1、用A的第1行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第1行第1列的数;
2、用A的第1行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第1行第2列的数;
3、用A的第1行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第1行第3列的数;
依次进行,(直到)用A的第1行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第1行第末列的的数。
二、
1、用A的第2行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第2行第1列的数;
2、用A的第2行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第2行第2列的数;
3、用A的第2行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第2行第3列的数;
依次进行,(直到)用A的第2行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第2行第末列的的数。
依次进行,
(直到)用A的第末行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第末行第1列的数;
用A的第末行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第末行第2列的数;
用A的第末行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第末行第3列的数;
依次进行,
(直到)用A的第末行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第末行第末列的的数。
扩展资料:
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义[1]。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。
参考资料:矩阵乘法_百度百科
矩阵乘法公式是什么?
矩阵与数的乘法分配律公式为λ(A+B)=λA+λB。
矩阵相乘最重要的方法是一般矩阵乘积,它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义,一般单指矩阵乘积时,指的便是一般矩阵乘积。
用途:
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵,另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。
设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式,矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵相乘怎么算?
方法:左边矩阵第一行的元素分别与右边矩阵第一列的元素相乘,求和得到相乘矩阵的第一行的第一个元素。左边矩阵第一行的元素分别与右边矩阵第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素,以此类推。
值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
矩阵乘法注意事项
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
两个矩阵相乘怎么计算?
矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。
第一步先将前面矩阵的每一行分别与后面矩阵的列相乘作为结果矩阵的行列。
第二步算出结果即可。
第一个的列数等于第二个的行数,A(3,4) 。B(4,2) 。C=AB,C(3,2)。
扩展资料:
矩阵相乘最重要的方法是一般矩阵乘积。只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。
一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。