汉诺塔问题c语言(汉诺塔问题c语言递归函数)
C语言汉诺塔
要看懂递归程序,往往应先从最简单情况看起。
先看hanoi(1, one, two, three)的情况。这时直接将one柱上的一个盘子搬到three柱上。注意,这里one柱或three柱到底是A、B还是C并不重要,要记住的是函数第二个参数代表的柱上的一个盘被搬到第四个参数代表的柱上。为方便,将这个动作记为:
one =》three
再看hanoi(2, one, two, three)的情况。考虑到hanoi(1)的情况已经分析过了,可知这时实际上将产生三个动作,分别是:
one =》two
one =》three
two =》three
很显然,这实际上相当于将one柱上的两个盘直接搬到three柱上。
再看hanoi(3, one, two, three)的情况。分析
hanoi(2, one , three, two)
one =》three
hanoi(2, two, one, three)
即:先将one柱上的两个盘搬到two柱上,再将one柱上的一个盘搬到three柱上,最后再将two柱上的两个盘搬到three柱上。这不就等于将one柱上的三个盘直接搬到three柱上吗?
运用归纳法可知,对任意n,
hanoi(n-1, one , three, two)
one =》three
hanoi(n-1, two, one, three)
就是先将one柱上的n-1个盘搬到two柱上,再将one柱上的一个盘搬到three柱上,最后再将two柱上的n-1个盘搬到three柱上。这就是我们所需要的结果!
C语言汉诺塔问题,请问这个n=3的详细步骤是什么呀,大一新生没听懂
这是汉诺塔的算法的问题。程序本身很简单。
汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
实现这个算法可以简单分为三个步骤:
(1)?????把n-1个盘子由A?移到?B,此时C作为中间缓存项(a,c,b);
(2)?????把第n个盘子由?A移到?C;
(3)?????把n-1个盘子由B?移到?C,此时A作为中间缓存项(b,a,c);;
此程序输出的时候,用的是1、2、3代表三根柱子,我给改成A、B、C,实际运行情况如下所示:
这个主要是看算法,再一个就是递归的学习,程序本身非常简单。
C语言汉诺塔程序
将以下内容全部复制到新建的源文件中:(本人自己写的,因为你那课本上的代码,没解释,书写不规范,很难理解清楚,所以我直接新写了一个完整的代码,附带详细说明)
#include stdio.h
//汉诺塔x层塔从A塔整体搬到C塔,中间临时B塔。
//x层塔是从大到小往上叠放。每次移动只能移动一层塔。并且在移动过程中必须保证小层在上边
//借助B塔可以将x层塔全部从A搬到C上,并且符合要求(在移动过程中大的那块在下边,小的那块在上边)
int main()
{
void tower(int x,char a,char b,char c); //声明函数
int x=5,a='A',b='B',c='C'; //x表示有5层塔,具体要多少层自己修改这个值。abc分别表示ABC塔。
tower(x,a,b,c); //x层塔从a移动到c的全过程,主程序只有这条有效语句
return 0;
}
//以下是tower函数的定义
//参数解析:x层塔放在a上,b是中间塔,c是目标塔。即x层塔要从a搬到c上。
//此函数实现x层塔从a整体转移到c上。以及这个过程是怎么搬的全部过程。
void tower(int x,char a,char b,char c)
{
if(x==1)printf("将%d从%c放到%c\n",x,a,c); //只有1层塔时,直接从a搬到c上。
else //不止1层塔,则先将x-1层塔从a按照规律搬到b上,再将最后一块从a搬到c上,最后再将b上的x-1层塔按照规律搬到c上。
{
tower(x-1,a,c,b); //先将x-1层塔从a按照规律搬到b上,注意参数b放在最后,因为放在最后的参数是准备搬过去的目标塔。
printf("将%d从%c放到%c\n",x,a,c); //将最后一块从a搬到c上
tower(x-1,b,a,c); //最后再将b上的x-1层塔按照规律搬到c上,注意参数b放在开头,因为x-1层是要从b上搬过去的。
}
}