java设计模式及应用案例,java常用的设计模式及应用场景

http://www.itjxue.com  2023-01-20 09:57  来源:未知  点击次数: 

设计模式之单例模式

本文开始整个设计模式的系列学习,希望通过不断的学习,可以对设计模式有整体的掌握,并在项目中根据实际的情况加以利用。

单例模式是指一个类仅允许创建其自身的一个实例,并提供对该实例的访问权限。它包含静态变量,可以容纳其自身的唯一和私有实例。它被应用于这种场景——用户希望类的实例被约束为一个对象。在需要单个对象来协调整个系统时,它会很有帮助。

1、单例类只能有一个实例

2、单例类必须自己创建自己的唯一实例

3、单例类必须给其他所有对象提供这一实例

1.尽量使用懒加载

2.双重检索实现线程安全

3.构造方法为private

4.定义静态的Singleton instance对象和getInstance()方法

单例模式至少有六种写法。

作为一种重要的设计模式,单例模式的好处有:

1、控制资源的使用,通过线程同步来控制资源的并发访问

2、控制实例的产生,以达到节约资源的目的

3、控制数据的共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信

Singleton通过将构造方法限定为private避免了类在外部被实例化,在同一个虚拟机范围内,Singleton的唯一实例只能通过getInstance()方法访问。但其实通过Java反射机制是能够实例化构造方法为private的类的,那基本上会使所有的Java单例实现失效。

虽然也是只有一个线程能够执行,假如线程B先执行,线程B获得锁,线程B执行完之后,线程 A获得锁,但是此时没有检查singleton是否为空就直接执行了,所以还会出现两个singleton实例的情况。

既然懒汉式是非线程安全的,那就要改进它。最直接的想法是,给getInstance方法加锁不就好了,但是我们不需要给方法全部加锁啊,只需要给方法的一部分加锁就好了。基于这个考虑,引入了双检锁(Double Check Lock,简称DCL)的写法:

使用volatile 的原因:

对于JVM而言,它执行的是一个个Java指令。在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间, 然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就使出错成为了可能,我们仍然以A、B两个线程为例:

加载一个类时,其内部类不会同时被加载。一个类被加载,当且仅当其某个静态成员(静态域、构造器、静态方法等)被调用时发生。

枚举类实现单例模式是 effective java 作者极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。因为枚举类没有构造方法,可以防止反序列化操作。

1、除枚举方式外, 其他方法都会通过反射的方式破坏单例,反射是通过调用构造方法生成新的对象,所以如果我们想要阻止单例破坏,可以在构造方法中进行判断,若已有实例, 则阻止生成新的实例,解决办法如下:

2、如果单例类实现了序列化接口Serializable, 就可以通过反序列化破坏单例,所以我们可以不实现序列化接口,如果非得实现序列化接口,可以重写反序列化方法readResolve(), 反序列化时直接返回相关单例对象。

Runtime是一个典型的例子,看下JDK API对于这个类的解释"每个Java应用程序都有一个Runtime类实例,使应用程序能够与其运行的环境相连接,可以通过getRuntime方法获取当前运行时。应用程序不能创建自己的Runtime类实例。",这段话,有两点很重要:

1、每个应用程序都有一个Runtime类实例

2、应用程序不能创建自己的Runtime类实例

只有一个、不能自己创建,是不是典型的单例模式?看一下,Runtime类的写法:

为了节约系统资源,有时需要确保系统中某个类只有唯一一个实例,当这个唯一实例创建成功之后,我们无法再创建一个同类型的其他对象,所有的操作都只能基于这个唯一实例。为了确保对象的唯一性,我们可以通过单例模式来实现。

单例模式应用的场景一般发现在以下条件下:

(1)资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如上述中的日志文件,应用配置。

(2)控制资源的情况下,方便资源之间的互相通信。如线程池等。

关于单例模式的漫画分析:

单例模式的优缺点、注意事项、使用场景

JAVA 中static,final的用法最好有个例子 说明一下?急

一、static

请先看下面这段程序:

public class Hello{

public static void main(String[] args){ //(1)

System.out.println("Hello,world!"); //(2)

}

}

看过这段程序,对于大多数学过Java 的从来说,都不陌生。即使没有学过Java,而学过其它的高级语言,例如C,那你也应该能看懂这段代码的意思。它只是简单的输出“Hello,world”,一点别的用处都没有,然而,它却展示了static关键字的主要用法。

在1处,我们定义了一个静态的方法名为main,这就意味着告诉Java编译器,我这个方法不需要创建一个此类的对象即可使用。你还得你是怎么运行这个程序吗?一般,我们都是在命令行下,打入如下的命令(加下划线为手动输入):

javac Hello.java

java Hello

Hello,world!

这就是你运行的过程,第一行用来编译Hello.java这个文件,执行完后,如果你查看当前,会发现多了一个Hello.class文件,那就是第一行产生的Java二进制字节码。第二行就是执行一个Java程序的最普遍做法。执行结果如你所料。在2中,你可能会想,为什么要这样才能输出。好,我们来分解一下这条语句。(如果没有安装Java文档,请到Sun的官方网站浏览J2SE API)首先,System是位于java.lang包中的一个核心类,如果你查看它的定义,你会发现有这样一行:public static final PrintStream out;接着在进一步,点击PrintStream这个超链接,在METHOD页面,你会看到大量定义的方法,查找println,会有这样一行:

public void println(String x)。

好了,现在你应该明白为什么我们要那样调用了,out是System的一个静态变量,所以可以直接使用,而out所属的类有一个println方法。

静态方法

通常,在一个类中定义一个方法为static,那就是说,无需本类的对象即可调用此方法。如下所示:

class Simple{

static void go(){

System.out.println("Go...");

}

}

public class Cal{

public static void main(String[] args){

Simple.go();

}

}

调用一个静态方法就是“类名.方法名”,静态方法的使用很简单如上所示。一般来说,静态方法常常为应用程序中的其它类提供一些实用工具所用,在Java的类库中大量的静态方法正是出于此目的而定义的。

静态变量

静态变量与静态方法类似。所有此类实例共享此静态变量,也就是说在类装载时,只分配一块存储空间,所有此类的对象都可以操控此块存储空间,当然对于final则另当别论了。看下面这段代码:

class Value{

static int c=0;

static void inc(){

c++;

}

}

class Count{

public static void prt(String s){

System.out.println(s);

}

public static void main(String[] args){

Value v1,v2;

v1=new Value();

v2=new Value();

prt("v1.c="+v1.c+" v2.c="+v2.c);

v1.inc();

prt("v1.c="+v1.c+" v2.c="+v2.c);

}

}

结果如下:

v1.c=0 v2.c=0

v1.c=1 v2.c=1

由此可以证明它们共享一块存储区。static变量有点类似于C中的全局变量的概念。值得探讨的是静态变量的初始化问题。我们修改上面的程序:

class Value{

static int c=0;

Value(){

c=15;

}

Value(int i){

c=i;

}

static void inc(){

c++;

}

}

class Count{

public static void prt(String s){

System.out.println(s);

}

Value v=new Value(10);

static Value v1,v2;

static{

prt("v1.c="+v1.c+" v2.c="+v2.c);

v1=new Value(27);

prt("v1.c="+v1.c+" v2.c="+v2.c);

v2=new Value(15);

prt("v1.c="+v1.c+" v2.c="+v2.c);

}

public static void main(String[] args){

Count ct=new Count();

prt("ct.c="+ct.v.c);

prt("v1.c="+v1.c+" v2.c="+v2.c);

v1.inc();

prt("v1.c="+v1.c+" v2.c="+v2.c);

prt("ct.c="+ct.v.c);

}

}

运行结果如下:

v1.c=0 v2.c=0

v1.c=27 v2.c=27

v1.c=15 v2.c=15

ct.c=10

v1.c=10 v2.c=10

v1.c=11 v2.c=11

ct.c=11

这个程序展示了静态初始化的各种特性。如果你初次接触Java,结果可能令你吃惊。可能会对static后加大括号感到困惑。首先要告诉你的是,static定义的变量会优先于任何其它非static变量,不论其出现的顺序如何。正如在程序中所表现的,虽然v出现在v1和v2的前面,但是结果却是v1和v2的初始化在v的前面。在static{后面跟着一段代码,这是用来进行显式的静态变量初始化,这段代码只会初始化一次,且在类被第一次装载时。如果你能读懂并理解这段代码,会帮助你对static关键字的认识。在涉及到继承的时候,会先初始化父类的static变量,然后是子类的,依次类推。非静态变量不是本文的主题,在此不做详细讨论,请参考Think in Java中的讲解。

静态类

通常一个普通类不允许声明为静态的,只有一个内部类才可以。这时这个声明为静态的内部类可以直接作为一个普通类来使用,而不需实例一个外部类。如下代码所示:

public class StaticCls{

public static void main(String[] args){

OuterCls.InnerCls oi=new OuterCls.InnerCls();

}

}

class OuterCls{

public static class InnerCls{

InnerCls(){

System.out.println("InnerCls");

}

}

}

输出结果会如你所料:

InnerCls

和普通类一样。内部类的其它用法请参阅Think in Java中的相关章节,此处不作详解。 二.finalfinal成员

当你在类中定义变量时,在其前面加上final关键字,那便是说,这个变量一旦被初始化便不可改变,这里不可改变的意思对基本类型来说是其值不可变,而对于对象变量来说其引用不可再变。其初始化可以在两个地方,一是其定义处,也就是说在final变量定义时直接给其赋值,二是在构造函数中。这两个地方只能选其一,要么在定义时给值,要么在构造函数中给值,不能同时既在定义时给了值,又在构造函数中给另外的值。下面这段代码演示了这一点:

import java.util.List;

import java.util.ArrayList;

import java.util.LinkedList;

public class Bat{

final PI=3.14; //在定义时便给址值

final int i; //因为要在构造函数中进行初始化,所以此处便不可再给值

final List list; //此变量也与上面的一样

Bat(){

i=100;

list=new LinkedList();

}

Bat(int ii,List l){

i=ii;

list=l;

}

public static void main(String[] args){

Bat b=new Bat();

b.list.add(new Bat());

//b.i=25;

//b.list=new ArrayList();

System.out.println("I="+b.i+" List Type:"+b.list.getClass());

b=new Bat(23,new ArrayList());

b.list.add(new Bat());

System.out.println("I="+b.i+" List Type:"+b.list.getClass());

}

}

此程序很简单的演示了final的常规用法。在这里使用在构造函数中进行初始化的方法,这使你有了一点灵活性。如Bat的两个重载构造函数所示,第一个缺省构造函数会为你提供默认的值,重载的那个构造函数会根据你所提供的值或类型为final变量初始化。然而有时你并不需要这种灵活性,你只需要在定义时便给定其值并永不变化,这时就不要再用这种方法。在main方法中有两行语句注释掉了,如果你去掉注释,程序便无法通过编译,这便是说,不论是i的值或是list的类型,一旦初始化,确实无法再更改。然而b可以通过重新初始化来指定i的值或list的类型,输出结果中显示了这一点:

I=100 List Type:class java.util.LinkedList

I=23 List Type:class java.util.ArrayList

还有一种用法是定义方法中的参数为final,对于基本类型的变量,这样做并没有什么实际意义,因为基本类型的变量在调用方法时是传值的,也就是说你可以在方法中更改这个参数变量而不会影响到调用语句,然而对于对象变量,却显得很实用,因为对象变量在传递时是传递其引用,这样你在方法中对对象变量的修改也会影响到调用语句中的对象变量,当你在方法中不需要改变作为参数的对象变量时,明确使用final进行声明,会防止你无意的修改而影响到调用方法。

另外方法中的内部类在用到方法中的参变量时,此参变也必须声明为final才可使用,如下代码所示:

public class INClass{

void innerClass(final String str){

class IClass{

IClass(){

System.out.println(str);

}

}

IClass ic=new IClass();

}

public static void main(String[] args){

INClass inc=new INClass();

inc.innerClass("Hello");

}

}

final方法

将方法声明为final,那就说明你已经知道这个方法提供的功能已经满足你要求,不需要进行扩展,并且也不允许任何从此类继承的类来覆写这个方法,但是继承仍然可以继承这个方法,也就是说可以直接使用。另外有一种被称为inline的机制,它会使你在调用final方法时,直接将方法主体插入到调用处,而不是进行例行的方法调用,例如保存断点,压栈等,这样可能会使你的程序效率有所提高,然而当你的方法主体非常庞大时,或你在多处调用此方法,那么你的调用主体代码便会迅速膨胀,可能反而会影响效率,所以你要慎用final进行方法定义。

final类

当你将final用于类身上时,你就需要仔细考虑,因为一个final类是无法被任何人继承的,那也就意味着此类在一个继承树中是一个叶子类,并且此类的设计已被认为很完美而不需要进行修改或扩展。对于final类中的成员,你可以定义其为final,也可以不是final。而对于方法,由于所属类为final的关系,自然也就成了final型的。你也可以明确的给final类中的方法加上一个final,但这显然没有意义。

下面的程序演示了final方法和final类的用法:

final class final{

final String str="final Data";

public String str1="non final data";

final public void print(){

System.out.println("final method.");

}

public void what(){

System.out.println(str+"\n"+str1);

}

}

public class FinalDemo { //extends final 无法继承

public static void main(String[] args){

final f=new final();

f.what();

f.print();

}

}

从程序中可以看出,final类与普通类的使用几乎没有差别,只是它失去了被继承的特性。final方法与非final方法的区别也很难从程序行看出,只是记住慎用。final在设计模式中的应用

在设计模式中有一种模式叫做不变模式,在Java中通过final关键字可以很容易的实现这个模式,在讲解final成员时用到的程序Bat.java就是一个不变模式的例子。如果你对此感兴趣,可以参考阎宏博士编写的《Java与模式》一书中的讲解。

各位,23种设计模式都在哪些场合运用到

其中创建型有:

一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点

例如:随处可见,比如Servlet,sprigMVC创建时都是单例多线程的。

完美的实例是:private static Singleton instance = new Singleton();

创建线程的方式有很多种,但是很多都扛不住多线程的检验,上面是简单又实用的例子,多线程下也是安全的。

二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。

三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。

例如:虽然简单工厂(静态工厂)没有进入23种设计模式,但是java web中的很多配置文件玩的还是它。

Spring中下面三种方式实例化bean:

1.使用类构造器实例化

bean id="orderService" class="cn.itcast.OrderServiceBean"/

2.使用静态工厂方法实例化

bean id="personService" class="cn.itcast.service.OrderFactory" factory- method="createOrder"/

public class OrderFactory {

public static OrderServiceBean createOrder(){

return new OrderServiceBean();

}

}

3.使用实例工厂方法实例化:

bean id="personServiceFactory" class="cn.itcast.service.OrderFactory"/

bean id="personService" factory-bean="personServiceFactory" factory-method="createOrder"/

public class OrderFactory {

public OrderServiceBean createOrder(){

return new OrderServiceBean();

}

}

第一种方法,IOC容易直接根据配置文件中的class属性通过反射创建一个实例,使用的是该类的默认构造方法。第二种则是调用class指定的工厂类的

工厂方法,来返回一个相应的bean实例,值得注意的是工厂类的方法是静态方法,所以不用产生工厂本身的实例。而第三种则不同,它除了配置与第二种相同

外,唯一的不同就是方法不是静态的,所以创建bean的实例对象时需要先生成工厂类的实例。实例了bean对象时,需要对其中的属性也进行赋值,这时就是经常被提及的依赖注入。

以上其实有错误:Spring很多情况下创建对象很定是反射呀,尤其是注解和DI(依赖注入),小朋友,想什么呢?肯定不是用new()来创建:

Class c = Class.forName("cn.itcast.OrderServiceBean");

Object bean = c.newInstance();

四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。

五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。

行为型有:

六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。

例如:jdk中的各种容器类的基础模式

七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。

例如:据说是jdk使用最多的模式,好比邮件订阅或RSS订阅

八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。

九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。

十、State,状态模式:允许对象在其内部状态改变时改变他的行为。对象看起来似乎改变了他的类。

十一、Strategy,策略模式:定义一系列的算法,把他们一个个封装起来,并使他们可以互相替换,本模式使得算法可以独立于使用它们的客户。

例如:comparator 比较器的实现利用了此模式

十二、China of Responsibility,职责链模式:使多个对象都有机会处理请求,从而避免请求的送发者和接收者之间的耦合关系 。

此处强调一点就是,链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象

例如:struts2 interceptor 用到的就是是责任链模式

十三、Mediator,中介者模式:用一个中介对象封装一些列的对象交互。

十四、Visitor,访问者模式:表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变各元素类的前提下定义作用于这个元素的新操作。

十五、Interpreter,解释器模式:给定一个语言,定义他的文法的一个表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

十六、Memento,备忘录模式:在不破坏对象的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。

结构型有:

十七、Composite,组合模式:将对象组合成树形结构以表示部分整体的关系,Composite使得用户对单个对象和组合对象的使用具有一致性。

十八、Facade,外观模式:为子系统中的一组接口提供一致的界面,facade提供了一高层接口,这个接口使得子系统更容易使用。

十九、Proxy,代理模式:为其他对象提供一种代理以控制对这个对象的访问。

例如:经典的体现在Spring AOP切面中,Spring中利用了俩种代理类型。

其实,代理也分为静态和动态,但是我们一般常用动态,因为静态代理秀不起来

二十、Adapter,适配器模式:将一类的接口转换成客户希望的另外一个接口,Adapter模式使得原本由于接口不兼容而不能一起工作那些类可以一起工作。

其中对象的适配器模式是各种结构型模式的起源,分为三种:类,对象,接口的适配器模式。

结一下三种适配器模式的应用场景:

类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。

对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。

接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

例如:java io流中大量使用

二十一、Decrator,装饰模式:动态地给一个对象增加一些额外的职责,就增加的功能来说,Decorator模式相比生成子类更加灵活。

对比:适配器模式主要是为了接口的转换,而装饰者模式关注的是通过组合来动态的为被装饰者注入新的功能或行为(即所谓的责任)。

二十二、Bridge,桥模式:将抽象部分与它的实现部分相分离,使他们可以独立的变化。

二十三、Flyweight,享元模式:主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

例如:数据库连接池便是这个原理

java学习作为一名java初学者,如何快速学习j

那首先来了解一下什么是java:

Java是SUN(Stanford University Network,斯坦福大学网络公司)1995年推出的一门高级编程语言,是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。

那么为什么要使用这个语言呢,Java语言的特点跨平台性,通过Java语言编写的应用程序在不同的系统平台上都可以运行。原理是只要在需要运行java应用程序的操作系统上,先安装一个Java虚拟机(JVM Java Virtual Machine)即可。由JVM来负责Java程序在该系统中的运行。

下面对java学习进行一次史无前例的剖析,细致的讲解零基础的人怎么学习Java。先看下Java在基础阶段的知识点路线图。

内容多吗?不要被吓到了,知识点剖析的比较细,所以看着比较多。不要害怕学不会,经过下面的详解,你就会明白这些知识点都是干嘛的了。

入门阶段,主要是培养Java语言的编程思想。了解Java语言的语法,书写规范等,掌握Eclipse、MyEclipse等开发工具,编写Java代码的能力。学完这个阶段你应该可进行小型应用程序开发并且可以对数据库进行基本的增删改查管理。注意:此阶段知识点的学习,会有真实的项目进行驱动学习,让你轻松理解各知识点。

1计算机基础知识

针对零基础学习的人,从对计算机操作等知识的了解,延伸到Java语言的发展与开发工具的使用上。主要是让你知道怎样执行计算机命令,认识Java这门语言,感受编程语言Java怎么开发程序。

1) 计算机基础

让零基础学习的人先了解计算机相关知识,进而再去了解Java语言。

2) DOS常用命令

了解什么是DOS,并掌握DOS控制台的打开方式,同时熟悉常用的DOS命令,例如:盘符切换、进入指定目录、删除文件等,完成使用DOS命令对计算机进行操作和控制。

3) Java概述

了解Java语言的发展史、Java语言平台版本、Java语言的特点,以及JRE与JDK。JRE是Java的运行环境,JDK是Java开发工具包,它包含了Java的开发工具以及JRE。所以安装了JDK就不用再单独安装JRE了。

4) JDK环境安装配置

了解了什么是JDK,以及JDK的重要性,下一步我们就来学习如何安装和配置JDK环境。在安装JDK之前,我们首先需要下载JDK,针对不同的系统,我们需要下载不用版本的JDK。

5) 环境变量配置

了解path、classpath环境变量,理解path变量和classpath变量的作用,并掌握path变量和classpath变量的配置方式。

6) Java程序入门

当JDK、环境变量配置完毕,我们就可以开始 编写Java程序。编写Java程序可以使用如下几种工具:notepad(微软操作系统自带)、Editplus、Notepad++、Eclipse、MyEclipse,sublime等等。

IntelliJ IDEA工具的使用(重点)

2编程基础

此模块学习是让你了解编程的具体流程,学习Java基础语法的格式等。具体要掌握不同数据类型的变量定义与使用,掌握不同运算符的运算规则,掌握流程控制语句的执行流程,编写方法的声明与调用,创建数组并访问数组元素等知识。

1) 注释

在程序开发工程中,用于解释和说明程序的文字我们称之为注释,Java中的注释分为以下几种:单行注释、多行注释、文档注释。

2) 关键字

了解Java关键字的含义及特点,掌握关键字使用的注意事项。

3) 标识符

了解什么是标识符,标识符的组成规则,以及标识符使用时的注意事项。

4) 常量与变量

理解常量与变量的含义,并掌握常量与变量的区别、变量的定义格式以及变量的赋值。

5) 数据类型

掌握Java语言的数据类型,如基本数据类型:byte、short、int、long、float、double、char、boolean,以及引用类型:类、接口、数组。

6) 运算符

熟练掌握Java中的运算符:算术运算符、赋值运算符、比较运算符、逻辑运算符、位运算符、三目运算符。

7) 流程控制语句

了解什么是流程控制语句,掌握以下流程控制语句:顺序结构、选择结构、循环结构,并能够通过流程控制语句实现特定的功能。

8) 方法

掌握方法的定义及格式,并能正确的调用方法,理解方法的调用过程,同时清楚方法的注意事项;掌握方法重载及其特点。

9) 数组

了解数组的概念,掌握数组的定义格式、静态初始化、动态初始化,并能够理解Java中数组的内存图解。熟练掌握数组的遍历、获取最值、数组元素逆序、数组元素查找、数组排序和二分查找,以及二维数组的定义格式及初始化。

3面向对象

现实世界中,随处可见的一种事物就是对象,对象是事物存在的实体,如人类、书桌、计算机、高楼大厦等。人类解决问题的方式总是将复杂的事物简单化,于是就会思考这些对象都是由哪些部分组成的。通常都会将对象划分为两个部分,即动态部分与静态部分。静态部分,顾名思义就是不能动的部分,这个部分被称为“属性”,任何对象都会具备其自身属性,如一个人,它包括高矮、胖瘦、性别、年龄等属性。然而具有这些属性的人会执行哪些动作也是一个值得探讨的部分,这个人可以哭泣、微笑、说话、行走,这些是这个人具备的行为(动态部分),人类通过探讨对象的属性和观察对象的行为了解对象。

1) 面向对象思想

了解面向过程编程思想,能够通过案例理解Java的面向对象编程思想,了解面向对象开发、设计、特征。

2) 类与对象

了解什么是类,什么是对象,并理解类与对象之间的关系;熟练掌握类的定义、对象内存图等。

3) 成员变量和局部变量

了解什么是成员变量,什么是局部变量,以及从他们在类中的位置、内存中的位置、生命周期、初始化值等方面掌握他们的区别。

4) 匿名对象

了解什么是匿名对象,掌握匿名对象的两种使用情况。

5) 封装

清楚的了解什么是封装,并能够理解封装的优点与缺点,同时掌握封装的原则。

6) this关键字

掌握this关键字的含义与使用。

7) 构造方法

了解什么是构造方法,构造方法的作用,以及与构造方法相关的注意事项。

8) 继承

理解什么是继承,继承的好处以及java中继承的特点和注意事项,继承中成员变量的关系、构造方法的关系、成员方法的关系,方法重写与方法重载的区别。

9) 多态

理解什么是多态,掌握多态案例及成员访问的特点,多态的优点和缺点,多态中的转型问题。

10) 抽象类

了解什么是抽象类,抽象类的特点,抽象类成员的特点。

11) 接口

了解什么是接口,接口的特点,接口成员的特点,类与类、类与接口的关系,以及抽象类与接口的区别。

12) 内部类

什么是内部类,内部类的访问特点,内部类的位置,什么是成员内部类、局部内部类、匿名内部类,以及匿名内部类在开发中的使用。

4、常用类

类库就是Java API(Application Programming Interface,应用程序接口),是系统提供的已实现的标准类的集合。在程序设计中,合理和充分利用类库提供的类和接口,不仅可以完成字符串处理、绘图、网络应用、数学计算等多方面的工作,而且可以大大提高编程效率,使程序简练、易懂。

学习内容:掌握Object类、Scanner类、String类、StringBuffer类、StringBuilder类、Arrays类、基本包装类、正则表达式、Math类、Random类、System类、Date类、DateFormate类、Calendar类,及其常用方法。

5、集合

集合类存放的都是对象的引用,而非对象本身,出于表达上的便利,我们称集合中的对象就是指集合中对象的引用。简单一点就是说,集合是存放数据的容器。

学习内容:什么是集合?数组与集合有什么区别,集合类的特点,掌握Collection接口、Iterator接口、List接口、ListIterator接口、ArrayList类、Vector类、LinkedList类、泛型、Set接口、HashSet类、Map接口、HashMap类、LinkedHashMap类等。

6、IO

IO(Input/Output)是计算机输出/输出的接口。Java的核心库提供了全面的IO接口,包括:文件读写,标准设备输出等等。Java中IO是以流为基础进行输入输出的,所有数据被串行化写入输出流,或者从输入流读入。

1) 异常

了解什么是异常,异常的由来,常见的异常,异常的分类,掌握jvm对异常的默认处理方案,异常的处理方案:try…catch…finally、throws,什么是编译时异常,什么是运行时异常,掌握它们两的区别,throws关键字、throw关键字,以及这两个关键字的区别,熟练掌握自定义异常,异常注意事项。

2) File类

了解什么是File类,File类的用途,掌握File类的方法:createNewFile()、mkdir()、mkdirs()、delete()、renameTo(File dest)、isDirectory()、isFile()、exists()、等方法,以及File类的基本获取功能方法和高级获取功能方法。

3) IO流

了解什么是IO流,IO流的用途;熟练掌握输入流、输出流、字符流、字节流、IO流的常用基类;如何使用字节流读写数据、复制数据;什么是字节缓冲流,如何使用字节缓冲流读写数据;什么是转换流,如何使用转换流更加高效的读写数据,内存操作流、打印流、标准输入输出流、序列化流、Properties集合。

4) IO流练习

(1) 复制文本文件;

(2) 复制图片;

(3) 把ArrayList集合中的字符串数据存储到文本文件;

(4) 从文本文件中读取数据(每一行为一个字符串数据)到集合中,并遍历集合;

(5) 复制单极文件夹;

(6) 复制单极文件夹中指定文件并修改文件名称;

(7) 复制多极文件夹;

(8) 已知s.txt文件中有这样的一个字符串:“hcexfgijkamdnoqrzstuvwybpl”;

(9) 请编写程序读取数据内容,把数据排序后写入ss.txt中;

(10) 获取每次读取数据的行号;

(11) 登录注册IO版。

7、多线程

是指从软件或者硬件上实现多个线程并发执行的技术。具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能。具有这种能力的系统包括对称多处理机、多核心处理器以及芯片级多处理(Chip-level multithreading)或同时多线程(Simultaneous multithreading)处理器。在一个程序中,这些独立运行的程序片段叫作“线程”(Thread),利用它编程的概念就叫作“多线程处理(Multithreading)”。具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程(台湾译作“执行绪”),进而提升整体处理性能。

1) 多线程

了解什么是线程,什么是多线程,理解java程序的运行原理,掌握多线程的实现方案,如何获取和设置线程名称、线程的生命周期、如何解决线程安全问题、线程同步、Lock锁、死锁问题、线程间通信、线程的状态及状态转换、线程池。

2) 多线程面试题

(1) 多线程有几种实现方案,分别是哪几种?

(2) 同步有几种方式,分别是什么?

(3) 启动一个线程是run()还是start()?它们的区别?

(4) sleep()和wait()方法的区别;

(5) 为什么wait(),notify(),notifyAll()等方法都定义在Object类中;

(6) 线程的生命周期图。

3) 设计模式

了解什么是设计模式,设计模式的分类,熟练掌握单例设计模式(懒汉式、饿汉式)。

8 、网络编程

网络编程最主要的工作就是在发送端把信息通过规定好的协议进行组装包,在接收端按照规定好的协议把包进行解析,从而提取出对应的信息,达到通信的目的。

9、反射

JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。

Java新特性:(重点及理解)

Java7特性重点:

switch支持String、泛型自动类型推断

理解:可catch多个异常,异常之间使用“|”分隔

Java8特性重点:Lambda表达式、接口中的默认方法和静态方法、新的Date API。

大家凑合着看看吧。

视频教程你可以去B站上看一下老杜的159集的视频教程,这套视频教程在B站上的播放量是140多万,你说这套视频教程好不好呢?

如何在JAVA的类中只创建一个实例

你说的是JAVA中的设计模式之一—单例模式Singleton

Singleton

模式主要作用是保证在Java应用程序中,一个类Class

只有一个实例存在。

一般Singleton

模式通常有几种种形式:

第一种形式:

定义一个类,它的构造函数为private

的,它有一个static的private的该类变量,在类初始化时实例话,

通过一个public的getInstance方法获取对它的引用,继而调用其中的方法。

public

class

Singleton

{

private

Singleton(){}

//在自己内部定义自己一个实例,是不是很奇怪?

//注意这是private

只供内部调用

private

static

Singleton

instance

=

new

Singleton();

//这里提供了一个供外部访问本class

的静态方法,可以直接访问

public

static

Singleton

getInstance()

{

return

instance;

}

}

第二种形式:

public

class

Singleton

{

private

static

Singleton

instance

=

null;

public

static

synchronized

Singleton

getInstance()

{

//这个方法比上面有所改进,不用每次都进行生成对象,只是第一次

//使用时生成实例,提高了效率!

if

(instance==null)

instance=new

Singleton();

return

instance;

}

}

其他形式:定义一个类,它的构造函数为private的,所有方法为static的。一般认为第一种形式要更加安全些

谁能介绍一下JAVA平台开发中最长用的几种设计模式~最好是通俗一些的并且有实例的~500分酬谢

例子很另类,不过还比较好懂

工厂模式, 工厂方法模式,单例模式, 外观(Facade)模式, 观察者(Observer)模式,桥接(Bridge)模式都是比较常用的,不同的项目有不同的设计方向,可以参考的设计模式也不尽相同,没有定数,只是上面这几个模式用的比较多一些。

其他的模式我找了一下,都列出来了。

======================

Java常用的设计模式

创建型模式

1、FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory

工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:如何创建及如何向客户端提供。

2、BUILDER—MM最爱听的就是“我爱你”这句话了,见到不同地方的MM,要能够用她们的方言跟她说这句话哦,我有一个多种语言翻译机,上面每种语言都有一个按键,见到MM我只要按对应的键,它就能够用相应的语言说出“我爱你”这句话了,国外的MM也可以轻松搞掂,这就是我的“我爱你”builder。(这一定比美军在伊拉克用的翻译机好卖)

建造模式:将产品的内部表象和产品的生成过程分割开来,从而使一个建造过程生成具有不同的内部表象的产品对象。建造模式使得产品内部表象可以独立的变化,客户不必知道产品内部组成的细节。建造模式可以强制实行一种分步骤进行的建造过程。

3、FACTORY METHOD—请MM去麦当劳吃汉堡,不同的MM有不同的口味,要每个都记住是一件烦人的事情,我一般采用Factory Method模式,带着MM到服务员那儿,说“要一个汉堡”,具体要什么样的汉堡呢,让MM直接跟服务员说就行了。

工厂方法模式:核心工厂类不再负责所有产品的创建,而是将具体创建的工作交给子类去做,成为一个抽象工厂角色,仅负责给出具体工厂类必须实现的接口,而不接触哪一个产品类应当被实例化这种细节。

4、PROTOTYPE—跟MM用QQ聊天,一定要说些深情的话语了,我搜集了好多肉麻的情话,需要时只要copy出来放到QQ里面就行了,这就是我的情话prototype了。(100块钱一份,你要不要)

原始模型模式:通过给出一个原型对象来指明所要创建的对象的类型,然后用复制这个原型对象的方法创建出更多同类型的对象。原始模型模式允许动态的增加或减少产品类,产品类不需要非得有任何事先确定的等级结构,原始模型模式适用于任何的等级结构。缺点是每一个类都必须配备一个克隆方法。

5、SINGLETON—俺有6个漂亮的老婆,她们的老公都是我,我就是我们家里的老公Sigleton,她们只要说道“老公”,都是指的同一个人,那就是我(刚才做了个梦啦,哪有这么好的事)

单例模式:单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例单例模式。单例模式只应在有真正的“单一实例”的需求时才可使用。

结构型模式

6、ADAPTER—在朋友聚会上碰到了一个美女Sarah,从香港来的,可我不会说粤语,她不会说普通话,只好求助于我的朋友kent了,他作为我和Sarah之间的Adapter,让我和Sarah可以相互交谈了(也不知道他会不会耍我)

适配器(变压器)模式:把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口原因不匹配而无法一起工作的两个类能够一起工作。适配类可以根据参数返还一个合适的实例给客户端。

7、BRIDGE—早上碰到MM,要说早上好,晚上碰到MM,要说晚上好;碰到MM穿了件新衣服,要说你的衣服好漂亮哦,碰到MM新做的发型,要说你的头发好漂亮哦。不要问我“早上碰到MM新做了个发型怎么说”这种问题,自己用BRIDGE组合一下不就行了

桥梁模式:将抽象化与实现化脱耦,使得二者可以独立的变化,也就是说将他们之间的强关联变成弱关联,也就是指在一个软件系统的抽象化和实现化之间使用组合/聚合关系而不是继承关系,从而使两者可以独立的变化。

8、COMPOSITE—Mary今天过生日。“我过生日,你要送我一件礼物。”“嗯,好吧,去商店,你自己挑。”“这件T恤挺漂亮,买,这条裙子好看,买,这个包也不错,买。”“喂,买了三件了呀,我只答应送一件礼物的哦。”“什么呀,T恤加裙子加包包,正好配成一套呀,小姐,麻烦你包起来。”“……”,MM都会用Composite模式了,你会了没有?

合成模式:合成模式将对象组织到树结构中,可以用来描述整体与部分的关系。合成模式就是一个处理对象的树结构的模式。合成模式把部分与整体的关系用树结构表示出来。合成模式使得客户端把一个个单独的成分对象和由他们复合而成的合成对象同等看待。

9、DECORATOR—Mary过完轮到Sarly过生日,还是不要叫她自己挑了,不然这个月伙食费肯定玩完,拿出我去年在华山顶上照的照片,在背面写上“最好的的礼物,就是爱你的Fita”,再到街上礼品店买了个像框(卖礼品的MM也很漂亮哦),再找隔壁搞美术设计的Mike设计了一个漂亮的盒子装起来……,我们都是Decorator,最终都在修饰我这个人呀,怎么样,看懂了吗?

装饰模式:装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案,提供比继承更多的灵活性。动态给一个对象增加功能,这些功能可以再动态的撤消。增加由一些基本功能的排列组合而产生的非常大量的功能。

10、FACADE—我有一个专业的Nikon相机,我就喜欢自己手动调光圈、快门,这样照出来的照片才专业,但MM可不懂这些,教了半天也不会。幸好相机有Facade设计模式,把相机调整到自动档,只要对准目标按快门就行了,一切由相机自动调整,这样MM也可以用这个相机给我拍张照片了。

门面模式:外部与一个子系统的通信必须通过一个统一的门面对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。每一个子系统只有一个门面类,而且此门面类只有一个实例,也就是说它是一个单例模式。但整个系统可以有多个门面类。

11、FLYWEIGHT—每天跟MM发短信,手指都累死了,最近买了个新手机,可以把一些常用的句子存在手机里,要用的时候,直接拿出来,在前面加上MM的名字就可以发送了,再不用一个字一个字敲了。共享的句子就是Flyweight,MM的名字就是提取出来的外部特征,根据上下文情况使用。

享元模式:FLYWEIGHT在拳击比赛中指最轻量级。享元模式以共享的方式高效的支持大量的细粒度对象。享元模式能做到共享的关键是区分内蕴状态和外蕴状态。内蕴状态存储在享元内部,不会随环境的改变而有所不同。外蕴状态是随环境的改变而改变的。外蕴状态不能影响内蕴状态,它们是相互独立的。将可以共享的状态和不可以共享的状态从常规类中区分开来,将不可以共享的状态从类里剔除出去。客户端不可以直接创建被共享的对象,而应当使用一个工厂对象负责创建被共享的对象。享元模式大幅度的降低内存中对象的数量。

12、PROXY—跟MM在网上聊天,一开头总是“hi,你好”,“你从哪儿来呀?”“你多大了?”“身高多少呀?”这些话,真烦人,写个程序做为我的Proxy吧,凡是接收到这些话都设置好了自动的回答,接收到其他的话时再通知我回答,怎么样,酷吧。

代理模式:代理模式给某一个对象提供一个代理对象,并由代理对象控制对源对象的引用。代理就是一个人或一个机构代表另一个人或者一个机构采取行动。某些情况下,客户不想或者不能够直接引用一个对象,代理对象可以在客户和目标对象直接起到中介的作用。客户端分辨不出代理主题对象与真实主题对象。代理模式可以并不知道真正的被代理对象,而仅仅持有一个被代理对象的接口,这时候代理对象不能够创建被代理对象,被代理对象必须有系统的其他角色代为创建并传入。

行为模式

13、CHAIN OF RESPONSIBLEITY—晚上去上英语课,为了好开溜坐到了最后一排,哇,前面坐了好几个漂亮的MM哎,找张纸条,写上“Hi,可以做我的女朋友吗?如果不愿意请向前传”,纸条就一个接一个的传上去了,糟糕,传到第一排的MM把纸条传给老师了,听说是个老处女呀,快跑!

责任链模式:在责任链模式中,很多对象由每一个对象对其下家的引用而接

起来形成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。客户并不知道链上的哪一个对象最终处理这个请求,系统可以在不影响客户端的情况下动态的重新组织链和分配责任。处理者有两个选择:承担责任或者把责任推给下家。一个请求可以最终不被任何接收端对象所接受。

14、COMMAND—俺有一个MM家里管得特别严,没法见面,只好借助于她弟弟在我们俩之间传送信息,她对我有什么指示,就写一张纸条让她弟弟带给我。这不,她弟弟又传送过来一个COMMAND,为了感谢他,我请他吃了碗杂酱面,哪知道他说:“我同时给我姐姐三个男朋友送COMMAND,就数你最小气,才请我吃面。”,:-(

命令模式:命令模式把一个请求或者操作封装到一个对象中。命令模式把发出命令的责任和执行命令的责任分割开,委派给不同的对象。命令模式允许请求的一方和发送的一方独立开来,使得请求的一方不必知道接收请求的一方的接口,更不必知道请求是怎么被接收,以及操作是否执行,何时被执行以及是怎么被执行的。系统支持命令的撤消。

15、INTERPRETER—俺有一个《泡MM真经》,上面有各种泡MM的攻略,比如说去吃西餐的步骤、去看电影的方法等等,跟MM约会时,只要做一个Interpreter,照着上面的脚本执行就可以了。

解释器模式:给定一个语言后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。解释器模式将描述怎样在有了一个简单的文法后,使用模式设计解释这些语句。在解释器模式里面提到的语言是指任何解释器对象能够解释的任何组合。在解释器模式中需要定义一个代表文法的命令类的等级结构,也就是一系列的组合规则。每一个命令对象都有一个解释方法,代表对命令对象的解释。命令对象的等级结构中的对象的任何排列组合都是一个语言。

16、ITERATOR—我爱上了Mary,不顾一切的向她求婚。

Mary:“想要我跟你结婚,得答应我的条件”

我:“什么条件我都答应,你说吧”

Mary:“我看上了那个一克拉的钻石”

我:“我买,我买,还有吗?”

Mary:“我看上了湖边的那栋别墅”

我:“我买,我买,还有吗?”

Mary:“你的小弟弟必须要有50cm长”

我脑袋嗡的一声,坐在椅子上,一咬牙:“我剪,我剪,还有吗?”

……

迭代子模式:迭代子模式可以顺序访问一个聚集中的元素而不必暴露聚集的内部表象。多个对象聚在一起形成的总体称之为聚集,聚集对象是能够包容一组对象的容器对象。迭代子模式将迭代逻辑封装到一个独立的子对象中,从而与聚集本身隔开。迭代子模式简化了聚集的界面。每一个聚集对象都可以有一个或一个以上的迭代子对象,每一个迭代子的迭代状态可以是彼此独立的。迭代算法可以独立于聚集角色变化。

17、MEDIATOR—四个MM打麻将,相互之间谁应该给谁多少钱算不清楚了,幸亏当时我在旁边,按照各自的筹码数算钱,赚了钱的从我这里拿,赔了钱的也付给我,一切就OK啦,俺得到了四个MM的电话。

调停者模式:调停者模式包装了一系列对象相互作用的方式,使得这些对象不必相互明显作用。从而使他们可以松散偶合。当某些对象之间的作用发生改变时,不会立即影响其他的一些对象之间的作用。保证这些作用可以彼此独立的变化。调停者模式将多对多的相互作用转化为一对多的相互作用。调停者模式将对象的行为和协作抽象化,把对象在小尺度的行为上与其他对象的相互作用分开处理。

18、MEMENTO—同时跟几个MM聊天时,一定要记清楚刚才跟MM说了些什么话,不然MM发现了会不高兴的哦,幸亏我有个备忘录,刚才与哪个MM说了什么话我都拷贝一份放到备忘录里面保存,这样可以随时察看以前的记录啦。

备忘录模式:备忘录对象是一个用来存储另外一个对象内部状态的快照的对象。备忘录模式的用意是在不破坏封装的条件下,将一个对象的状态捉住,并外部化,存储起来,从而可以在将来合适的时候把这个对象还原到存储起来的状态。

19、OBSERVER—想知道咱们公司最新MM情报吗?加入公司的MM情报邮件组就行了,tom负责搜集情报,他发现的新情报不用一个一个通知我们,直接发布给邮件组,我们作为订阅者(观察者)就可以及时收到情报啦

观察者模式:观察者模式定义了一种一队多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态上发生变化时,会通知所有观察者对象,使他们能够自动更新自己。

20、STATE—跟MM交往时,一定要注意她的状态哦,在不同的状态时她的行为会有不同,比如你约她今天晚上去看电影,对你没兴趣的MM就会说“有事情啦”,对你不讨厌但还没喜欢上的MM就会说“好啊,不过可以带上我同事么?”,已经喜欢上你的MM就会说“几点钟?看完电影再去泡吧怎么样?”,当然你看电影过程中表现良好的话,也可以把MM的状态从不讨厌不喜欢变成喜欢哦。

状态模式:状态模式允许一个对象在其内部状态改变的时候改变行为。这个对象看上去象是改变了它的类一样。状态模式把所研究的对象的行为包装在不同的状态对象里,每一个状态对象都属于一个抽象状态类的一个子类。状态模式的意图是让一个对象在其内部状态改变的时候,其行为也随之改变。状态模式需要对每一个系统可能取得的状态创立一个状态类的子类。当系统的状态变化时,系统便改变所选的子类。

21、STRATEGY—跟不同类型的MM约会,要用不同的策略,有的请电影比较好,有的则去吃小吃效果不错,有的去海边浪漫最合适,单目的都是为了得到MM的芳心,我的追MM锦囊中有好多Strategy哦。

策略模式:策略模式针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。策略模式把行为和环境分开。环境类负责维持和查询行为类,各种算法在具体的策略类中提供。由于算法和环境独立开来,算法的增减,修改都不会影响到环境和客户端。

22、TEMPLATE METHOD——看过《如何说服女生上床》这部经典文章吗?女生从认识到上床的不变的步骤分为巧遇、打破僵局、展开追求、接吻、前戏、动手、爱抚、进去八大步骤(Template method),但每个步骤针对不同的情况,都有不一样的做法,这就要看你随机应变啦(具体实现);

模板方法模式:模板方法模式准备一个抽象类,将部分逻辑以具体方法以及具体构造子的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑。不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现。先制定一个顶级逻辑框架,而将逻辑的细节留给具体的子类去实现。

23、VISITOR—情人节到了,要给每个MM送一束鲜花和一张卡片,可是每个MM送的花都要针对她个人的特点,每张卡片也要根据个人的特点来挑,我一个人哪搞得清楚,还是找花店老板和礼品店老板做一下Visitor,让花店老板根据MM的特点选一束花,让礼品店老板也根据每个人特点选一张卡,这样就轻松多了;

访问者模式:访问者模式的目的是封装一些施加于某种数据结构元素之上的操作。一旦这些操作需要修改的话,接受这个操作的数据结构可以保持不变。访问者模式适用于数据结构相对未定的系统,它把数据结构和作用于结构上的操作之间的耦合解脱开,使得操作集合可以相对自由的演化。访问者模式使得增加新的操作变的很容易,就是增加一个新的访问者类。访问者模式将有关的行为集中到一个访问者对象中,而不是分散到一个个的节点类中。当使用访问者模式时,要将尽可能多的对象浏览逻辑放在访问者类中,而不是放到它的子类中。访问者模式可以跨过几个类的等级结构访问属于不同的等级结构的成员类。

(责任编辑:IT教学网)

更多

推荐Flash教程文章