python爬虫网站完整代码(python爬虫爬网页源码)
如何用python爬取网站数据?
这里简单介绍一下吧,以抓取网站静态、动态2种数据为例,实验环境win10+python3.6+pycharm5.0,主要内容如下:
抓取网站静态数据(数据在网页源码中):以糗事百科网站数据为例
1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:
对应的网页源码如下,包含我们所需要的数据:
2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:
程序运行截图如下,已经成功爬取到数据:
抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例
1.这里假设我们爬取的是债券数据,主要包括年利率、借款标题、期限、金额和进度这5个字段信息,截图如下:
打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:
2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:
程序运行截图如下,已经成功抓取到数据:
至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。
如何在scrapy框架下,用python实现爬虫自动跳转页面来抓去网页内容
(1)一种是像我之前爬虫新京报网的新闻,下一页的url可以通过审查元素获得,第一页的网址是
在第一页的时候,下一页按钮的审查元素是
我们通过获取next_pages = response.xpath('//div[@id="page"]/a[@class="next"]/@href').extract()[0]
,便可以得到下一页的url,next_page = "" + next_pages,
这一部分的完整代码为:
page_link=set() #保存下一页页面url
content_link=set() #保存页面内所有可获得的url
rules={'page':LinkExtractor(allow=(r'^\w+/2016/\d{2}/\d{2}/\d{6}.html
))}
start_urls={''}
def parse(self, response):
#爬取一个页面内的所有url链接
??? for link in self.rules['page'].extract_links(response):
??????? if link.url not in self.content_link:
??????????? self.page_link.add(link.url)
??????????? yield scrapy.Request(link.url, callback=self.parse_item)
#自动获取下一页的url
??? next_pages = response.xpath('//div[@id="page"]/a[@class="next"]/@href').extract()[0]
??? if next_pages:
??????? next_page = "" + next_pages
??????? self.page_link.add(next_page)
??????? yield scrapy.Request(next_page, callback=self.parse)
(2)第二种情况,就是在下一页的审查元素中没有提供url链接,需要自己分析,在这里依然举个例子,比如搜狐新闻,该页中下一页按钮的审查元素是:
我们不能通过href来直接过得下一页的url,需要自己手动获得,那现在我们来分析
第二页的url:,第三页的,最后一页的,由此可以分析出这一共100页的url,是"+i+".shtml",其中i是从5230到5132倒序排列的,也就是说通过for循环,就可以获得这100页的所有url,完整代码如下:在这里给大家加一个新的方法的使用start_request,该方法就是子定义start_urls,把所有自定义的url放到page_link中,self.make_requests_from_url方法会自动获取里面的请求
python 爬虫(学了3天写出的代码)
import requests import parsel import threading,os import queue
class Thread(threading.Thread): def init (self,queue,path): threading.Thread. init (self) self.queue = queue self.path = path
def download_novel(url, path): res = get_response(url) selctor = parsel.Selector(res) title = selctor.css('.bookname h1::text').get() print(title) content = ' '.join(selctor.css('#content::text').getall()) # 使用join方法改变内容; with open( path + title + ".txt","w",encoding='utf-8') as f: f.write(content) print(title,'保存成功!') f.close()
def get_response(url): # 获得网站源码; response = requests.get(url) response.encoding = 'utf-8' return response.text
if name == ' main ': # 函数入口 url = str(input('请输入你要下载小说的url:')) response = get_response(url) sel = parsel.Selector(response) novelname = sel.css('#info h1::text').get() urllist = sel.css('.box_con p dl dd a::attr(href)').getall() queue = queue.Queue() path = './{}/'.format(novelname)
如何用Python爬虫抓取网页内容?
爬虫流程
其实把网络爬虫抽象开来看,它无外乎包含如下几个步骤
模拟请求网页。模拟浏览器,打开目标网站。
获取数据。打开网站之后,就可以自动化的获取我们所需要的网站数据。
保存数据。拿到数据之后,需要持久化到本地文件或者数据库等存储设备中。
那么我们该如何使用 Python 来编写自己的爬虫程序呢,在这里我要重点介绍一个 Python 库:Requests。
Requests 使用
Requests 库是 Python 中发起 HTTP 请求的库,使用非常方便简单。
模拟发送 HTTP 请求
发送 GET 请求
当我们用浏览器打开豆瓣首页时,其实发送的最原始的请求就是 GET 请求
import requests
res = requests.get('')
print(res)
print(type(res))
Response [200]
class 'requests.models.Response'
Python爬虫:想听榜单歌曲?只需要14行代码即可搞定
虽然说XPath比正则表达式用起来方便,但是没有最方便,只有更方便。我们的BeautifulSoup库就能做到更方便的爬取想要的东西。
使用之前,还是老规矩,先安装BeautifulSoup库,指令如下:
其中文开发文档:
BeautifulSoup库是一个强大的Python语言的XML和HTML解析库。它提供了一些简单的函数来处理导航、搜索、修改分析树等功能。
BeautifulSoup库还能自动将输入的文档转换为Unicode编码,输出文档转换为UTF-8编码。
所以,在使用BeautifulSoup库的过程中,不需要开发中考虑编码的问题,除非你解析的文档,本身就没有指定编码方式,这才需要开发中进行编码处理。
下面,我们来详细介绍BeautifulSoup库的使用规则。
下面,我们来详细介绍BeautifulSoup库的重点知识。
首先,BeautifulSoup库中一个重要的概念就是选择解释器。因为其底层依赖的全是这些解释器,我们有必要认识一下。博主专门列出了一个表格:
从上面表格观察,我们一般爬虫使用lxml HTML解析器即可,不仅速度快,而且兼容性强大,只是需要安装C语言库这一个缺点(不能叫缺点,应该叫麻烦)。
要使用BeautifulSoup库,需要和其他库一样进行导入,但你虽然安装的是beautifulsoup4,但导入的名称并不是beautifulsoup4,而是bs4。用法如下:
运行之后,输出文本如下:
基础的用法很简单,这里不在赘述。从现在开始,我们来详细学习BeautifulSoup库的所有重要知识点,第一个就是节点选择器。
所谓节点选择器,就是直接通过节点的名称选择节点,然后再用string属性就可以得到节点内的文本,这种方式获取最快。
比如,基础用法中,我们使用h1直接获取了h1节点,然后通过h1.string即可得到它的文本。但这种用法有一个明显的缺点,就是层次复杂不适合。
所以,我们在使用节点选择器之前,需要将文档缩小。比如一个文档很多很大,但我们获取的内容只在id为blog的p中,那么我们先获取这个p,再在p内部使用节点选择器就非常合适了。
HTML示例代码:
下面的一些示例,我们还是使用这个HTML代码进行节点选择器的讲解。
这里,我们先来教会大家如何获取节点的名称属性以及内容,示例如下:
运行之后,效果如下:
一般来说一个节点的子节点有可能很多,通过上面的方式获取,只能得到第一个。如果要获取一个标签的所有子节点,这里有2种方式。先来看代码:
运行之后,效果如下:
如上面代码所示,我们有2种方式获取所有子节点,一种是通过contents属性,一种是通过children属性,2者遍历的结果都是一样的。
既然能获取直接子节点,那么获取所有子孙节点也是肯定可以的。BeautifulSoup库给我们提供了descendants属性获取子孙节点,示例如下:
运行之后,效果如下:
同样的,在实际的爬虫程序中,我们有时候也需要通过逆向查找父节点,或者查找兄弟节点。
BeautifulSoup库,给我们提供了parent属性获取父节点,同时提供了next_sibling属性获取当前节点的下一个兄弟节点,previous_sibling属性获取上一个兄弟节点。
示例代码如下:
运行之后,效果如下:
对于节点选择器,博主已经介绍了相对于文本内容较少的完全可以这么做。但实际的爬虫爬的网址都是大量的数据,开始使用节点选择器就不合适了。所以,我们要考虑通过方法选择器进行先一步的处理。
find_all()方法主要用于根据节点的名称、属性、文本内容等选择所有符合要求的节点。其完整的定义如下所示:
【实战】还是测试上面的HTML,我们获取name=a,attr={"class":"aaa"},并且文本等于text="Python板块"板块的节点。
示例代码如下所示:
运行之后,效果如下所示:
find()与find_all()仅差一个all,但结果却有2点不同:
1.find()只查找符合条件的第一个节点,而find_all()是查找符合条件的所有节点2.find()方法返回的是bs4.element.Tag对象,而find_all()返回的是bs4.element.ResultSet对象
下面,我们来查找上面HTML中的a标签,看看返回结果有何不同,示例如下:
运行之后,效果如下:
首先,我们来了解一下CSS选择器的规则:
1..classname:选取样式名为classname的节点,也就是class属性值是classname的节点2.#idname:选取id属性为idname的节点3.nodename:选取节点名为nodename的节点
一般来说,在BeautifulSoup库中,我们使用函数select()进行CSS选择器的操作。示例如下:
这里,我们选择class等于li1的节点。运行之后,效果如下:
因为,我们需要实现嵌套CSS选择器的用法,但上面的HTML不合适。这里,我们略作修改,仅仅更改
Python爬虫如何写?
Python的爬虫库其实很多,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据
这个就很简单,直接根据网址请求页面就行,这里以爬取糗事百科上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据
很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”-“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分享的内容能对你上有所帮助吧,也欢迎大家评论、留言。