化工原理课程设计列管式换热器总结(化工原理课程设计列管换热器

http://www.itjxue.com  2023-02-13 21:44  来源:未知  点击次数: 

化工原理课程设计《列管式换热器的设计》分析讨论答案。。

额,你不是我们学校我们系要设计换热管的那一部分孩童吧。。。。。。。。。。。

这些问题的答案全部都在书上换热器那一章里,特别是第七问回答完全就可以解决第2,3,4,5问。第6问在书后附录部分都有的。

第七问液体流动方向,并流,逆流,错流这几种方式带来的热传递效应是不同的,也带了换热过程中能量消耗问题,才带来出口温度与入口温度的差距,才导致选择不同的型号,不同的热计算方式。

毕竟是要大家自己动手设计,还是自己看书多多想想吧,我只能帮这些。

化工原理列管式换热器课程设计?

转载,供参考:列管式换热器的设计和选用(1) 列管式换热器的设计和选用应考虑的问题

◎ 冷、热流体流动通道的选择

 具体选择冷、热流体流动通道的选择

在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:

a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。

b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。

c) 压力高的流体宜在管内,以免壳体承受压力。

d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。

e) 流量小而粘度大( )的流体一般以壳程为宜,因在壳程Re100即可达到湍流。但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。

f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。

g) 需要被冷却物料一般选壳程,便于散热。

以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。

◎ 流速的选择

 常用流速范围流速的选择

流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。因此选择适宜的流速是十分重要的。根据经验,表4.7.1及表4.7.2列出一些工业上常用的流速范围,以供参考。

表4.7.1 列管换热器内常用的流速范围流体种类流速 m/s管程壳程一般液体

宜结垢液体

气 体0.5~0.3

1

5~300.2~1.5

0.5

3~15

表4.7.2 液体在列管换热器中流速(在钢管中)液体粘度 最大流速 m/s1500

1000~500

500~100

100~53

35~1

10.6

0.75

1.1

1.5

1.8

2.4◎ 流动方式的选择

 流动方式选择流动方式的选择

除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。

当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见4.4节。

◎ 换热管规格和排列的选择

 具体选择 换热管规格和排列的选择

换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格,对一般流体是适应的。此外,还有 ,φ57×2.5的无缝钢管和φ25×2, 的耐酸不锈钢管。

按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产的钢管长度多为6m、9m,故系列标准中管长有1.5,2,3,4.5,6和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6。

管子的排列方式有等边三角形和正方形两种(图4.7.11a,图4.7.11b)。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。如将正方形排列的管束斜转45°安装(图4.7.11c),可在一定程度上提高表面传热系数。

图4.7.11 管子在管板上的排列

◎ 折流挡板

 折流挡板间距的具体选择折流挡板

安装折流挡板的目的是为提高管外表面传热系数,为取得良好的效果,挡板的形状和间距必须适当。

对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图4.7.12可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。

 a.切除过少 b.切除适当 c.切除过多

图4.7.12 挡板切除对流动的影响

挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的0.2~1.0倍。我国系列标准中采用的挡板间距为:

固定管板式有100,150,200,300,450,600,700mm七种

浮头式有100,150,200,250,300,350,450(或480),600mm八种。(2)流体通过换热器时阻力的计算

换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格的换热器。按一般经验,对于液体常控制在104~105Pa范围内,对于气体则以103~104Pa为宜。此外,也可依据操作压力不同而有所差别,参考下表。换热器操作允许压降△P换热器操作压力P(Pa)允许压降△P105 (绝对压力)

0~105 (表压)

105 (表压)0.1P

0.5P

5×104 Pa◎ 管程阻力

 管程阻力可按一般摩擦阻力计算式求得。

 具体计算公式管程阻力损失

管程阻力损失可按一般摩擦阻力计算式求得。但管程总的阻力 应是各程直管摩擦阻力 、每程回弯阻力 以及进出口阻力 三项之和。而 相比之下常可忽略不计。因此可用下式计算管程总阻力损失 :

 

 式中  每程直管阻力 ;

每程回弯阻力 ;

Ft-结构校正系数,无因次,对于 的管子,Ft=1.4,对于 的管子Ft=1.5;

Ns-串联的壳程数,指串联的换热器数;

Np-管程数;

由此式可以看出,管程的阻力损失(或压降)正比于管程数Np的三次方,即

  ∝

对同一换热器,若由单管程改为两管程,阻力损失剧增为原来的8倍,而强制对流传热、湍流条件下的表面传热系数只增为原来的1.74倍;若由单管程改为四管程,阻力损失增为原来的64倍,而表面传热系数只增为原来的3倍。由此可见,在选择换热器管程数目时,应该兼顾传热与流体压降两方面的得失。

◎ 壳程阻力

 对于壳程阻力的计算,由于流动状态比较复杂,计算公式较多,计算结果相差较大。

 埃索法计算公式壳程阻力损失

对于壳程阻力损失的计算,由于流动状态比较复杂,提出的计算公式较多,所得计算结果相差不少。下面为埃索法计算壳程阻力损失的公式:

 

 式中 -壳程总阻力损失, ;

-流过管束的阻力损失, ;

-流过折流板缺口的阻力损失, ;

Fs-壳程阻力结垢校正系数,对液体可取Fs=1.15,对气体或可凝蒸汽取Fs=1.0;

Ns-壳程数;

 又管束阻力损失  

折流板缺口阻力损失

 式中 -折流板数目;

  -横过管束中心的管子数,对于三角形排列的管束, ;对于正方形排列的管束, , 为每一壳程的管子总数;

 B-折流板间距,m;

 D-壳程直径,m;

  -按壳程流通截面积或按其截面积 计算所得的壳程流速,m/s;

 F-管子排列形式对压降的校正系数,对三角形排列F=0.5,对正方形排列F=0.3,对正方形斜转45°,F=04;

  -壳程流体摩擦系数,根据 ,由图4.7.13求出(图中t为管子中心距),当 亦可由下式求出:

因 , 正比于 ,由式4.7.4可知,管束阻力损失 ,基本上正比于 ,即

若挡板间距减小一半, 剧增8倍,而表面传热系数 只增加1.46倍。因此,在选择挡板间距时,亦应兼顾传热与流体压降两方面的得失。同理,壳程数的选择也应如此。

图4.7.13 壳程摩擦系数f0与Re0的关系列管式换热器的设计和选用(续) (3)列管式换热器的设计和选用的计算步骤

设有流量为去qm,h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程:

当Q和 已知时,要求取传热面积A必须知K和 则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。

◎ 初选换热器的规格尺寸

◆ 初步选定换热器的流动方式,保证温差修正系数 大于0.8,否则应改变流动方式,重新计算。

◆ 计算热流量Q及平均传热温差△tm,根据经验估计总传热系数K估,初估传热面积A估。

◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 ◎ 计算管、壳程阻力

在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数NP和折流板间距B再计算压力降是否合理。这时NP与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。

◎ 核算总传热系数

分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。

◎ 计算传热面积并求裕度

根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为:

换热器的传热强化途径如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的设备上获得更大的生产能力和效益,成为现代工业发展的一个重要问题。

依总传热速率方程:

强化方法:提高 K、A、 均可强化传热。

◎提高传热系数K

热阻主要集中于 较小的一侧,提高 小的一侧有效。

◆ 降低污垢热阻

◆ 提高表面传热系数

  提高 的方法:

无相变化传热:

 1) 加大流速;

 2)人工粗造表面;

 3)扰流元件。 有相变化传热:

蒸汽冷凝 :

 1)滴状冷凝,

 2)不凝气体排放,

 3)气液流向一致 ,

 4)合理布置冷凝面,

 5)利用表面张力 (沟槽 ,金属丝)液体沸腾:

 1)保持核状沸腾,

 2) 制造人工表面,增加汽化核心数。

◎ 提高传热推动力

 加热蒸汽P ,

◎ 改变传热面积A

关于传热面积A的改变,不以增加换热器台数,改变换热器的尺寸来加大传热面积A,而是通过对传热面的改造,如开槽及加翅片、以不同异形管代替光滑圆管等措施来加大传热面积以强化传热过程。

列管式换热器的结构及工作原理

在暖气工程设备中, 列管式换热器 是一种高效节能的设备。由于其结构坚固,使用弹性大,适应性强,近些年来又对结构、工艺和材料等方面作了大量改进,使它的技术性能更趋于合理与先进。在供暖设施中的运用尤为关键,而且现在在我们的生活中也越来越受到广泛的运用因此,在门类众多的热交换器中, 列管式换热器 仍居于重要位置。下面我就为大家介绍一下列管式换热器的相关知识。

什么是列管式换热器

管式换热器是设备中很关键的一种装置,日常生活中,我们更为熟悉的称列管式换热器是做管壳式换热器,其实就是一种间壁式换热器,目前在暖气的运输过程中,列管式换热器仍然在各种换热器中占据领先的地位。我们可以见到的列管式换热器一般情况下,由壳体、管束、管板和封头四部分组成。

列管式换热器类型

列管式换热器类型有哪些?常见的类型是固定管板式,通过管与壳体的焊接,使得列管式换热器在固定性上很坚固,也保证了列管式换热器在安装时候安装的工艺比较简便。但是列管式换热器的壳体比较难清洗,因为重量的原因,不好翻转。此外,还有一种浮头式换热器,这种列管式换热器的管箱比较大,而壳体比较灵活,方便移动,是一款可以随意移动的列管式换热器。

“u”型列管式换热器,这种换热器的造型上的“U”型,而且列管式换热器的壳体与换热器在设计上选择了分开,这样的设计保证了列管式换热器可以自由进行伸缩,结构简单是这款列管式换热器的代表,因此在列管式换热器的清洁上是比较方便的。而且这款列管式换热器的传热效果也还是不错的,虽说比不上上述的两款列管式换热器。

列管式换热器结构与工作原理

列管式换热器结构是什么?列管式冷却器,由外部壳体以及内部冷却体两大部份组成.由于结构方式不同,外部连接形式分为管螺纹式和法兰式两种;从安装形式分为卧式和立式;从浮动形式分为浮动盘式和浮动头式;从冷却管结构分为螺管式和翅片管式;从折流的结构分为弓形折流板、矩形折流板、双堰形折流板和圆形折流板等多种结构形式,均按具体条件选用。

外部壳体包括:筒体、分水盖和回水盖.其上设有进、出油管和进、出 水管 ,并附设排油、排水、排气螺塞、锌棒安装孔连温度计接口等.

冷却体由冷却管、定孔盘、动孔盘、折流板等组成.冷却管两端与定、动孔盘连接;定孔盘和外体法兰连接,动孔盘可在外体内自由伸缩,以消除温度对冷却管由于热胀冷缩而产生的影响.折流板起强化传热及支承冷却管的作用。

列管式换热器工作原理是怎样的?列管式冷却器的热介质是由筒体上的接管进口,顺序经各折流通道,曲折地流至接管出口.而冷却介质则采用双管程流动,即冷却介质由进水口经分水盖进入一半冷 却管之后,再从回水盖流入另一半冷却管进入另一侧分水盖及出水管.冷介质在双管程流过程中,吸收热介质放出的余热由出水口排出,使工作介质保持额定的工作温度。

列管式换热器使用与操作

1、在冷却器设备不发生下沉的情况下,留出足够的空间以便能从壳体内抽出管束,设备就位时应按吊装规范进行,待水平找正后拧紧地脚螺丝,连接冷热介质的进出管.

2、冷却器启动前应放尽腔内的空气,以提高传热效率,其步骤:(1)、松开热、冷介质端的放气螺塞,关闭介质排出阀;(2)、缓慢打开热、冷介质的进水阀,使热、冷介质从放气孔溢出为止,然后拧紧放气螺塞,关闭进水阀.

3、当水温升高5~10℃后,打开冷却介质的进水阀(注意:切忌快速打开进水阀,因冷却水大量流过冷却器时,会使换热器表面长期形成一层导热性很差的“过 冷层”),再打开热介质的出入阀,使之处于流动状态,然后注意调整冷却介质的流量,使热介质保持在最佳使用温度.

4、如果冷却水一侧发生电化腐蚀,可在指定位置安装锌棒.

5、较脏的介质通过冷却器之前,应设有过滤装置.

6、被冷却介质的压力应大于冷却介质的压力。

编辑总结:以上就是列管式换热器的结构及工作原理的相关知识介绍,希望能够帮助到有这方面需求的朋友们!如需了解更多相关资讯,请继续关注我们网站,后续将呈现更多精彩内容。

(责任编辑:IT教学网)

更多

推荐Flash实例教程文章