python获取网页需要什么库(python抓取网页)
Python网页解析库:用requests-html爬取网页
Python 中可以进行网页解析的库有很多,常见的有 BeautifulSoup 和 lxml 等。在网上玩爬虫的文章通常都是介绍 BeautifulSoup 这个库,我平常也是常用这个库,最近用 Xpath 用得比较多,使用 BeautifulSoup 就不大习惯,很久之前就知道 Reitz 大神出了一个叫 Requests-HTML 的库,一直没有兴趣看,这回可算歹着机会用一下了。
使用 pip install requests-html 安装,上手和 Reitz 的其他库一样,轻松简单:
这个库是在 requests 库上实现的,r 得到的结果是 Response 对象下面的一个子类,多个一个 html 的属性。所以 requests 库的响应对象可以进行什么操作,这个 r 也都可以。如果需要解析网页,直接获取响应对象的 html 属性:
不得不膜拜 Reitz 大神太会组装技术了。实际上 HTMLSession 是继承自 requests.Session 这个核心类,然后将 requests.Session 类里的 requests 方法改写,返回自己的一个 HTMLResponse 对象,这个类又是继承自 requests.Response,只是多加了一个 _from_response 的方法来构造实例:
之后在 HTMLResponse 里定义属性方法 html,就可以通过 html 属性访问了,实现也就是组装 PyQuery 来干。核心的解析类也大多是使用 PyQuery 和 lxml 来做解析,简化了名称,挺讨巧的。
元素定位可以选择两种方式:
方法名非常简单,符合 Python 优雅的风格,这里不妨对这两种方式简单的说明:
定位到元素以后势必要获取元素里面的内容和属性相关数据,获取文本:
获取元素的属性:
还可以通过模式来匹配对应的内容:
这个功能看起来比较鸡肋,可以深入研究优化一下,说不定能在 github 上混个提交。
除了一些基础操作,这个库还提供了一些人性化的操作。比如一键获取网页的所有超链接,这对于整站爬虫应该是个福音,URL 管理比较方便:
内容页面通常都是分页的,一次抓取不了太多,这个库可以获取分页信息:
结果如下:
通过迭代器实现了智能发现分页,这个迭代器里面会用一个叫 _next 的方法,贴一段源码感受下:
通过查找 a 标签里面是否含有指定的文本来判断是不是有下一页,通常我们的下一页都会通过 下一页 或者 加载更多 来引导,他就是利用这个标志来进行判断。默认的以列表形式存在全局: ['next','more','older'] 。我个人认为这种方式非常不灵活,几乎没有扩展性。 感兴趣的可以往 github 上提交代码优化。
也许是考虑到了现在 js 的一些异步加载,这个库支持 js 运行时,官方说明如下:
使用非常简单,直接调用以下方法:
第一次使用的时候会下载 Chromium,不过国内你懂的,自己想办法去下吧,就不要等它自己下载了。render 函数可以使用 js 脚本来操作页面,滚动操作单独做了参数。这对于上拉加载等新式页面是非常友好的。
如何用Python爬虫抓取网页内容?
爬虫流程
其实把网络爬虫抽象开来看,它无外乎包含如下几个步骤
模拟请求网页。模拟浏览器,打开目标网站。
获取数据。打开网站之后,就可以自动化的获取我们所需要的网站数据。
保存数据。拿到数据之后,需要持久化到本地文件或者数据库等存储设备中。
那么我们该如何使用 Python 来编写自己的爬虫程序呢,在这里我要重点介绍一个 Python 库:Requests。
Requests 使用
Requests 库是 Python 中发起 HTTP 请求的库,使用非常方便简单。
模拟发送 HTTP 请求
发送 GET 请求
当我们用浏览器打开豆瓣首页时,其实发送的最原始的请求就是 GET 请求
import requests
res = requests.get('')
print(res)
print(type(res))
Response [200]
class 'requests.models.Response'
请教网页里的特定数据怎么抓取?
网页抓取可以使用爬虫技术,以下是一些常用的网页抓取方法:
1. 使用 Python 的 Requests 库请求网页,然后使用 Beautiful Soup 库进行页面解析,提取目标数据。
2. 使用 Selenium 库模拟浏览器操作,通过 CSS Selector 或 XPath 定位特定元素,提取目标数据。
3. 使用 Scrapy 爬虫框架,在爬虫脚本中定义提取规则,自动抓取网页并提取目标数据。
需要注意的是,进行网页抓取时,应遵守网站的 Robots 协议,不要过于频繁地进行抓取,以免给网站带来负担。此外还需要注意数据的使用方式是否符合法规和道德规范。
全方面的掌握Requests库的使用【python爬虫入门进阶】(02)
上一篇文章简单的介绍了 爬虫相关的基础知识点,介绍了一个标准爬虫程序的三个步骤 。这篇文章就让我们接着来学习。
本文重点介绍requests库的使用以及爬虫协议。之前也写了一篇 Requests库使用的博客 ,有兴趣的小伙伴可以去看看。
前面介绍了Requests库是用来抓取网页源码,请求接口的利器,整体上是要比urllib库的request更加好用的库。官网上将其称之为唯一一个非转基因的Python HTTP库,人类可以安全享用。
Requests库有7个主要方法。
不过我们平常最常用的方法还是GET方法和POST方法。
get请求方法是爬虫中最常用到的方法,因为爬虫主要就是爬取网页的信息。最基础的使用是
这里需要通过 res.encoding='utf-8' 设置响应结果的编码格式是utf-8。不然可能会出现中文乱码
如果响应结果是二进制数据的话则需要通过 res.content 方法来提取响应结果。
设置编码的方式也可以是 res.content.decode('utf-8') 。
即
有时候get请求也需要传入参数,这里可以直接将参数拼接到URL上或者通过params参数传入一个字典。
运行结果是:
get请求只能传入简单的参数,如果参数比较复杂或者传入的参数比较多的话则GET请求就不再适用了,这时候就需要适用post请求方法了。
Post请求的请求类型有三种:
以表单的方式提交数据是POST请求的默认的请求格式,只需要将参数放在一个字典中进行传入即可。
这里将请求头的数据放在一个名为header的字典中,然后在请求时通过headers参数传入。在请求中设置了内容类型是 application/json ,编码格式是 charset=utf-8
传入的是一个json字符串,通过data参数进行传入。json字符串可以直接写也可以通过 json.dumps(dict) 方法将一个字典序列化,就像下面这样。
文件上传与本节爬虫的内容无关,在此就不过多介绍了。有兴趣的小伙伴可以看看 Python中如何编写接口,以及如何请求外部接口 这篇文章。
在网络请求中,我们常常会遇到状态码是3开头的重定向问题,在Requests中是默认开启允许重定向的,即遇到重定向时,会自动继续访问。通过将allow_redirects 属性设置为False不允许重定向。
通过timeout属性可以设置超时时间,单位是秒。get方法和post方法均可设置。
通过status_code属性可以获取接口的响应码。
有时候我们使用了抓包工具,这时候由于抓包证书提供的证书并不是受信任的数字证书颁发机构颁发的,所以证书的验证会失败,所以我们就需要关闭证书验证。在请求的时候把verify参数设置为False就可以关闭证书验证了。
爬虫协议也叫做robots协议,告诉网络蜘蛛哪些页面可以爬取,哪些页面不能爬取
爬虫文件的规范是:
允许所有的机器人
本文详细介绍了Request库的使用
Python爬虫如何写?
Python的爬虫库其实很多,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据
这个就很简单,直接根据网址请求页面就行,这里以爬取糗事百科上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据
很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”-“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分享的内容能对你上有所帮助吧,也欢迎大家评论、留言。