Python爬虫总结(python爬虫总结报告)
Python中的爬虫框架有哪些呢?
实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实现你想要的功能。更重要的,Python也是数据挖掘和分析的好能手。那么,Python爬虫一般用什么框架比较好?
一般来讲,只有在遇到比较大型的需求时,才会使用Python爬虫框架。这样的做的主要目的,是为了方便管理以及扩展。本文我将向大家推荐十个Python爬虫框架。
1、Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
2、Crawley:高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
3、Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
4、newspaper:可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用Python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
5、Python-goose:Java写的文章提取工具。Python-goose框架可提取的信息包括:文章主体内容、文章主要图片、文章中嵌入的任何Youtube/Vimeo视频、元描述、元标签。
6、Beautiful Soup:名气大,整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
7、mechanize:它的优点是可以加载JS。当然它也有缺点,比如文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8、selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
9、cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
10、PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。
如何入门 Python 爬虫
“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。
另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。
先长话短说总结一下。你需要学习:
基本的爬虫工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https: //github.com /nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说。说说当初写的一个集群爬下整个豆瓣的经验吧。
1)首先你要明白爬虫怎样工作
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?很简单:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter。简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…及时更新(预测这个网页多久会更新一次)如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,“路漫漫其修远兮,吾将上下而求索”。
python基础 爬虫项目有哪些?
我们上篇才讲了面试中需要准备的内容,关于最后一点可能讲的不是很详细,小伙伴们很有对项目这块很感兴趣。毕竟所有的理论知识最后都是通过实践检验的,如果能有拿得出手的项目,面试中会大大的加分。下面小编就来跟大讲讲python的爬虫项目有哪些以及该学点什么内容。
wesome-spider
这一项目收集了100多个爬虫,默认使用了Python作为爬虫语言。你既可以在这个项目中,找到爬取Bilibili视频的爬虫,也可以使用爬虫,通过豆瓣评分和评价人数等各项数据,来挖掘那些隐藏的好书,甚至还可以用来爬取京东、链家、网盘等生活所需的数据。此外,这个项目还提供了一些很有意思的爬虫,比如爬取神评论、妹子图片、心灵毒鸡汤等等,既有实用爬虫,也有恶搞自嗨,满足了大部分人实用爬虫的需求。
Nyspider
Nyspider也非常厉害,如果你想获得“信息”,它是一个不错的选择。在这个项目里,你既能获取链家的房产信息,也可以批量爬取A股的股东信息,猫眼电影的票房数据、还可以爬取猎聘网的招聘信息、获取融资数据等等,可谓是爬取数据,获取信息的好手。
python-spider
这个项目是ID为Jack-Cherish的东北大学学生整理的python爬虫资料,涵盖了很多爬虫实战项目,如下载漫画、答题辅助系统、抢票小助手等等等等。如果你已经学会了爬虫,急切得像找一些项目练手,这里就可以满足你的这一需求。当然,W3Cschool上也有很多爬虫实战项目,有需要的同学,也可以拿来作为练习使用。
以上的3个模块基于GitHub中的部分内容,感兴趣的小伙伴也可以了解下其他的模块,毕竟GitHub使用也比较广泛。更多Python学习推荐:PyThon学习网教学中心。
简述第一文《为什么选择爬虫,选择python》
1 为什么选择爬虫?要想论述这个问题,需要从网络爬虫是什么?学习爬虫的原因是什么?怎样学习爬虫来理清自己学习的目的,这样才能更好地去研究爬虫技术并坚持下来。
1.1 什么是爬虫:爬虫通常指的是网络爬虫,就是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。一般是根据定义的行为自动进行抓取,更智能的爬虫会自动分析目标网站结构。它还有一些不常使用的名字。如:网络蜘蛛(Web spider)、蚂蚁(ant)、自动检索工具(automatic indexer)、网络疾走(WEB scutter)、网络机器人等。
1.2 学习爬虫的原因:
1.2.1学习爬虫是一件很有趣的事。我曾利用爬虫抓过许多感兴趣东西,兴趣是最好的老师,感兴趣的东西学的快、记的牢,学后有成就感。
@学习爬虫,可以私人订制一个搜索引擎,并且可以对搜索引擎的数据采集工作原理进行更深层次地理解。有的朋友希望能够深层次地了解搜索引擎的爬虫工作原理,或者希望自己能够开发出一款私人搜索引擎,那么此时,学习爬虫是非常有必要的。简单来说,我们学会了爬虫编写之后,就可以利用爬虫自动地采集互联网中的信息,采集回来后进行相应的存储或处理,在需要检索某些信息的时候,只需在采集回来的信息中进行检索,即实现了私人的搜索引擎。当然,信息怎么爬取、怎么存储、怎么进行分词、怎么进行相关性计算等,都是需要我们进行设计的,爬虫技术主要解决信息爬取的问题。
@学习爬虫可以获取更多的数据源。这些数据源可以按我们的目的进行采集,去掉很多无关数据。在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大。此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息。
@对于很多SEO从业者来说,学习爬虫,可以更深层次地理解搜索引擎爬虫的工作原理,从而可以更好地进行搜索引擎优化。既然是搜索引擎优化,那么就必须要对搜索引擎的工作原理非常清楚,同时也需要掌握搜索引擎爬虫的工作原理,这样在进行搜索引擎优化时,才能知己知彼,百战不殆。
@学习爬虫更有钱景。爬虫工程师是当前紧缺人才,并且薪资待遇普遍较高,所以,深层次地掌握这门技术,对于就业来说,是非常有利的。有些朋友学习爬虫可能为了就业或者跳槽。从这个角度来说,爬虫工程师方向也是不错的选择之一,因为目前爬虫工程师的需求越来越大,而能够胜任这方面岗位的人员较少,所以属于一个比较紧缺的职业方向,并且随着大数据时代的来临,爬虫技术的应用将越来越广泛,在未来会拥有很好的发展空间。
除了以上为大家总结的4种常见的学习爬虫的原因外,可能你还有一些其他学习爬虫的原因,总之,不管是什么原因,理清自己学习的目的,就可以更好地去研究一门知识技术,并坚持下来。
1.3 怎样学习爬虫:
1.3.1 选择一门编程语言。入门爬虫的前提肯定是需要学习一门编程语言,推荐使用Python 。2018年5月Python已排名第一,列为最受欢迎的语言。很多人将 Python 和爬虫绑在一起,相比 Java , Php , Node 等静态编程语言来说,Python 内部的爬虫库更加丰富,提供了更多访问网页的 API。写一个爬虫不需要几十行,只需要 十几行就能搞定。尤其是现在反爬虫日渐严峻的情况下,如何伪装自己的爬虫尤为重要,例如 UA , Cookie , Ip 等等,Python 库对其的封装非常和谐,为此可以减少大部分代码量。
1.3.2 学习爬虫需要掌握的知识点。http相关知识,浏览器拦截、抓包;python的scrapy 、requests、BeautifulSoap等第三方库的安装、使用,编码知识、bytes 和str类型转换,抓取javascript 动态生成的内容,模拟post、get,header等,cookie处理、登录,代理访问,多线程访问、asyncio 异步,正则表达式、xpath,分布式爬虫开发等。
1.3.3 学习爬虫的基本方法。 ?理清楚爬虫所需的知识体系,然后各个击破;推荐先买一本有一定知名度的书便于系统的学习爬虫的知识体系。刚开始学的时候,建议从基础库开始,有一定理解之后,才用框架爬取,因为框架也是用基础搭建的,只不过集成了很多成熟的模块,提高了抓取的效率,完善了功能。多实战练习和总结实战练习,多总结对方网站的搭建技术、网站的反爬机制,该类型网站的解析方法,破解对方网站的反爬技巧等。
2 为什么选择Python?
百度知道在这方面介绍的很多了,相比其它编程语言,我就简答一下理由:
2.1 python是脚本语言。因为脚本语言与编译语言的开发测试过程不同,可以极大的提高编程效率。作为程序员至少应该掌握一本通用脚本语言,而python是当前最流行的通用脚本语言。与python相似的有ruby、tcl、perl等少数几种,而python被称为脚本语言之王。
2.2 python拥有广泛的社区。可以说,只要你想到的问题,只要你需要使用的第三方库,基本上都是python的接口。
2.3 python开发效率高。同样的任务,大约是java的10倍,c++的10-20倍。
2.4 python在科研上有大量的应用。大数据计算、模拟计算、科学计算都有很多的包。python几乎在每个linux操作系统上都安装有,大部分unix系统也都缺省安装,使用方便。
2.5 python有丰富和强大的独立库。它几乎不依赖第三方软件就可以完成大部分的系统运维和常见的任务开发;python帮助里还有许多例子代码,几乎拿过来略改一下就可以正式使用。
python的爬虫是什么意思
Python爬虫即使用Python程序开发的网络爬虫(网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。其实通俗的讲就是通过程序去获取 web 页面上自己想要的数据,也就是自动抓取数据。网络爬虫(英语:web crawler),也叫网络蜘蛛(spider),是一种用来自动浏览万维网的网络机器人。其目的一般为编纂网络索引。
网络搜索引擎等站点通过爬虫软件更新自身的网站内容或其对其他网站的索引。网络爬虫可以将自己所访问的页面保存下来,以便搜索引擎事后生成索引供用户搜索。
爬虫访问网站的过程会消耗目标系统资源。不少网络系统并不默许爬虫工作。因此在访问大量页面时,爬虫需要考虑到规划、负载,还需要讲“礼貌”。 不愿意被爬虫访问、被爬虫主人知晓的公开站点可以使用robots.txt文件之类的方法避免访问。这个文件可以要求机器人只对网站的一部分进行索引,或完全不作处理。
互联网上的页面极多,即使是最大的爬虫系统也无法做出完整的索引。因此在公元2000年之前的万维网出现初期,搜索引擎经常找不到多少相关结果。现在的搜索引擎在这方面已经进步很多,能够即刻给出高质量结果。
爬虫还可以验证超链接和HTML代码,用于网络抓取。
Python 爬虫
Python 爬虫架构
Python 爬虫架构主要由五个部分组成,分别是调度器、URL 管理器、网页下载器、网页解析器、应用程序(爬取的有价值数据)。
调度器:相当于一台电脑的 CPU,主要负责调度 URL 管理器、下载器、解析器之间的协调工作。
URL 管理器:包括待爬取的 URL 地址和已爬取的 URL 地址,防止重复抓取 URL 和循环抓取 URL,实现 URL 管理器主要用三种方式,通过内存、数据库、缓存数据库来实现。
网页下载器:通过传入一个 URL 地址来下载网页,将网页转换成一个字符串,网页下载器有 urlpb2(Python 官方基础模块)包括需要登录、代理、和 cookie,requests(第三方包)
网页解析器:将一个网页字符串进行解析,可以按照我们的要求来提取出我们有用的信息,也可以根据 DOM 树的解析方式来解析。网页解析器有正则表达式(直观,将网页转成字符串通过模糊匹配的方式来提取有价值的信息,当文档比较复杂的时候,该方法提取数据的时候就会非常的困难)、html.parser(Python 自带的)、beautifulsoup(第三方插件,可以使用 Python 自带的 html.parser 进行解析,也可以使用 lxml 进行解析,相对于其他几种来说要强大一些)、lxml(第三方插件,可以解析 xml 和 HTML),html.parser 和 beautifulsoup 以及 lxml 都是以 DOM 树的方式进行解析的。
应用程序:就是从网页中提取的有用数据组成的一个应用。
爬虫可以做什么?
你可以用爬虫爬图片,爬取视频等等你想要爬取的数据,只要你能通过浏览器访问的数据都可以通过爬虫获取。
爬虫的本质是什么?
模拟浏览器打开网页,获取网页中我们想要的那部分数据
浏览器打开网页的过程:
当你在浏览器中输入地址后,经过 DNS 服务器找到服务器主机,向服务器发送一个请求,服务器经过解析后发送给用户浏览器结果,包括 html,js,css 等文件内容,浏览器解析出来最后呈现给用户在浏览器上看到的结果
所以用户看到的浏览器的结果就是由 HTML 代码构成的,我们爬虫就是为了获取这些内容,通过分析和过滤 html 代码,从中获取我们想要资源。
相关推荐:《Python教程》以上就是小编分享的关于python的爬虫是什么意思的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!