mysql常见索引类型(mysql常用索引类型)
mysql索引类型有哪些
普通索引:一个索引只包含一个列,一个表可以有多个单列索引;
唯一索引:索引列的值必须唯一,但允许有空值;
复合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并;
聚簇索引:也可以称为主键索引,是一种数据存储方式,B+树结构,一张表只能有一个聚簇索引;
非聚簇索引:顾名思义,不是聚簇索引。
MYSQL的各个索引类型有什么区别?
PRIMARY, INDEX, UNIQUE 这3种是一类\x0d\x0aPRIMARY 主键。 就是 唯一 且 不能为空。\x0d\x0aINDEX 索引,普通的\x0d\x0aUNIQUE 唯一索引。 不允许有重复。\x0d\x0aFULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。\x0d\x0a\x0d\x0a举个例子来说,比如你在为某商场做一个会员卡的系统。\x0d\x0a这个系统有一个会员表\x0d\x0a有下列字段:\x0d\x0a会员编号 INT\x0d\x0a会员姓名 VARCHAR(10)\x0d\x0a会员身份证号码 VARCHAR(18)\x0d\x0a会员电话 VARCHAR(10)\x0d\x0a会员住址 VARCHAR(50)\x0d\x0a会员备注信息 TEXT\x0d\x0a\x0d\x0a那么这个 会员编号,作为主键,使用 PRIMARY\x0d\x0a会员姓名 如果要建索引的话,那么就是普通的 INDEX\x0d\x0a会员身份证号码 如果要建索引的话,那么可以选择 UNIQUE (唯一的,不允许重复)\x0d\x0a会员备注信息 , 如果需要建索引的话,可以选择 FULLTEXT,全文搜索。\x0d\x0a\x0d\x0a不过 FULLTEXT 用于搜索很长一篇文章的时候,效果最好。\x0d\x0a用在比较短的文本,如果就一两行字的,普通的 INDEX 也可以。
mysql之普通索引和唯一索引
常见的索引类型:哈希表、有序数组、搜索树。
mysql之普通索引和唯一索引。
执行查询的语句是 select id from T where k=5
这个查询语句在索引树上查找的过程,先是通过 B+ 树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。
InnoDB的索引组织结构:
change buffer:持久化的数据。InnoDB将更新操作缓存在 change buffer中,也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘,主要节省的则是随机读磁盘的IO消耗。
change buffer 只限于用在普通索引的场景下,而不适用于唯一索引.
merge:将 change buffer 中的操作应用到原数据页,得到最新结果的过程。
merge执行流程:
1、从磁盘读入数据页到内存
2、从change buffer里找出这个数据页的change buffer记录,依次应用,得到新版数据页
3、写redo log,这个redo log包含了数据的变更和change buffer的变更。
change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size=50 表示 change buffer 的大小最多只能占用 buffer pool 的 50%。
如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。
第一种情况是,这个记录要更新的目标页在内存中
这时,InnoDB 的处理流程如下:
第二种情况是,这个记录要更新的目标页不在内存中
这时,InnoDB 的处理流程如下:
mysql insert into t(id,k) values(id1,k1),(id2,k2); 当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。这条更新语句做了如下的操作(按照图中的数字顺序):
带change buffer的更新过程:
select * from t where k in (k1, k2) ,如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了.
【mysql】索引类型的划分
了解mysql的索引类型的时候,我觉得按照以下4中方式划分逻辑是比较清晰的。
1.存储结构 2.物理存储 3.作用字段 4.功能
按照数据存储的结构可以分B树索引和hash索引。
又称为 BTREE 索引,目前大部分的索引都是采用 B-树索引来存储的。B-树索引是一个典型的数据结构。
基于这种树形数据结构,表中的每一行都会在索引上有一个对应值。因此,在表中进行数据查询时,可以根据索引值一步一步定位到数据所在的行。
查询必须从索引的最左边的列开始。
查询不能跳过某一索引列,必须按照从左到右的顺序进行匹配。
存储引擎不能使用索引中范围条件右边的列。
也称为散列索引或 HASH 索引。MySQL 目前仅有 MEMORY 存储引擎和 HEAP 存储引擎支持这类索引。
其中,MEMORY 存储引擎可以支持 B-树索引和 HASH 索引,且将 HASH 当成默认索引。
HASH 索引不是基于树形的数据结构查找数据,而是根据索引列对应的哈希值的方法获取表的记录行。
不能使用 HASH 索引排序。
HASH 索引只支持等值比较,如“=”“IN()”或“=”。
HASH 索引不支持键的部分匹配,因为在计算 HASH 值的时候是通过整个索引值来计算的。
聚集索引是按照所以把数据排好序了,所以一个表只能存在一个聚集索引,其它的都是非聚集索引。
因这个特性,聚集索引是查询数据范围的时候有很大的性能优势。
但是也需要注意的是如果频繁更新的列不适合设置为聚集索引,
原因很简单,每次更新都需要从新排序,频繁的更新给的压力也大。
如果不指定的话,默认主键为聚集索引。
一个表里除了一个聚集索引外其他的都是非聚集索引,虽然不能把数据按照索引排序,但是索引数据是可以排序的。
所以非聚集索引查询范围的时候是先找索引列的范围,再通过这个索引查询行的值。
单列索引即一个索引只包含单个列。
组合索引指在表的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用。使用组合索引时遵循最左前缀集合
Primary Key(聚集索引):InnoDB存储引擎的表会存在主键(唯一非null),如果建表的时候没有指定主键,则会使用第一非空的唯一索引作为聚集索引,否则InnoDB会自动帮你创建一个不可见的、长度为6字节的row_id用来作为聚集索引。
Key(普通索引):是MySQL中的基本索引类型,允许在定义索引的列中插入重复值和空值
Unique(唯一索引):索引列的值必须唯一,但允许有空值。若是组合索引,则列值的组合必须唯一。
主键索引是一种特殊的唯一索引,不允许有空值。
既不是主键索引也不是唯一索引的一般索引。
FULLTEXT(全文索引):全文索引类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。
全文索引可以在CHAR、VARCHAR或者TEXT类型的列上创建。
空间索引主要用于地理空间数据类型 GEOMETRY。
下面是 mysql官网给出的几个存储引擎和索引之间的关系 。
欢迎大家的意见和交流
email: li_mingxie@163.com
mysql的索引类型
MySQL目前主要有以下几种索引类型:
1.普通索引
2.唯一索引
3.主键索引
4.组合索引
5.全文索引
mysql 索引有几种类型
如大家所知道的,Mysql目前主要有以下几种索引类型:FULLTEXT,HASH,BTREE,RTREE。
那么,这几种索引有什么功能和性能上的不同呢?
FULLTEXT
即为全文索引,目前只有MyISAM引擎支持。其可以在CREATE TABLE ,ALTER TABLE ,CREATE INDEX 使用,不过目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE INDEX创建FULLTEXT索引,要比先为一张表建立FULLTEXT然后再将数据写入的速度快很多。
全文索引并不是和MyISAM一起诞生的,它的出现是为了解决WHERE name LIKE “%word%"这类针对文本的模糊查询效率较低的问题。在没有全文索引之前,这样一个查询语句是要进行遍历数据表操作的,可见,在数据量较大时是极其的耗时的,如果没有异步IO处理,进程将被挟持,很浪费时间,当然这里不对异步IO作进一步讲解,想了解的童鞋,自行谷哥。
全文索引的使用方法并不复杂:
创建ALTER TABLE table ADD INDEX `FULLINDEX` USING FULLTEXT(`cname1`[,cname2…]);
使用SELECT * FROM table WHERE MATCH(cname1[,cname2…]) AGAINST ('word' MODE );
其中, MODE为搜寻方式(IN BOOLEAN MODE ,IN NATURAL LANGUAGE MODE ,IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION / WITH QUERY EXPANSION)。
关于这三种搜寻方式,愚安在这里也不多做交代,简单地说,就是,布尔模式,允许word里含一些特殊字符用于标记一些具体的要求,如+表示一定要有,-表示一定没有,*表示通用匹配符,是不是想起了正则,类似吧;自然语言模式,就是简单的单词匹配;含表达式的自然语言模式,就是先用自然语言模式处理,对返回的结果,再进行表达式匹配。
对搜索引擎稍微有点了解的同学,肯定知道分词这个概念,FULLTEXT索引也是按照分词原理建立索引的。西文中,大部分为字母文字,分词可以很方便的按照空格进行分割。但很明显,中文不能按照这种方式进行分词。那又怎么办呢?这个向大家介绍一个Mysql的中文分词插件Mysqlcft,有了它,就可以对中文进行分词,想了解的同学请移步Mysqlcft,当然还有其他的分词插件可以使用。
HASH
Hash这个词,可以说,自打我们开始码的那一天起,就开始不停地见到和使用到了。其实,hash就是一种(key=value)形式的键值对,如数学中的函数映射,允许多个key对应相同的value,但不允许一个key对应多个value。正是由于这个特性,hash很适合做索引,为某一列或几列建立hash索引,就会利用这一列或几列的值通过一定的算法计算出一个hash值,对应一行或几行数据(这里在概念上和函数映射有区别,不要混淆)。在java语言中,每个类都有自己的hashcode()方法,没有显示定义的都继承自object类,该方法使得每一个对象都是唯一的,在进行对象间equal比较,和序列化传输中起到了很重要的作用。hash的生成方法有很多种,足可以保证hash码的唯一性,例如在MongoDB中,每一个document都有系统为其生成的唯一的objectID(包含时间戳,主机散列值,进程PID,和自增ID)也是一种hash的表现。额,我好像扯远了-_-!
由于hash索引可以一次定位,不需要像树形索引那样逐层查找,因此具有极高的效率。那为什么还需要其他的树形索引呢?
在这里愚安就不自己总结了。引用下园子里其他大神的文章:来自 14的路 的MySQL的btree索引和hash索引的区别
(1)Hash 索引仅仅能满足"=","IN"和"="查询,不能使用范围查询。
由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。
(2)Hash 索引无法被用来避免数据的排序操作。
由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
(3)Hash 索引不能利用部分索引键查询。
对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。
(4)Hash 索引在任何时候都不能避免表扫描。
前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。
愚安我稍作补充,讲一下HASH索引的过程,顺便解释下上面的第4,5条:
当我们为某一列或某几列建立hash索引时(目前就只有MEMORY引擎显式地支持这种索引),会在硬盘上生成类似如下的文件:
hash值 存储地址
1db54bc745a1 77#45b5
4bca452157d4 76#4556,77#45cc…
…
hash值即为通过特定算法由指定列数据计算出来,磁盘地址即为所在数据行存储在硬盘上的地址(也有可能是其他存储地址,其实MEMORY会将hash表导入内存)。
这样,当我们进行WHERE age = 18 时,会将18通过相同的算法计算出一个hash值==在hash表中找到对应的储存地址==根据存储地址取得数据。
所以,每次查询时都要遍历hash表,直到找到对应的hash值,如(4),数据量大了之后,hash表也会变得庞大起来,性能下降,遍历耗时增加,如(5)。
BTREE
BTREE索引就是一种将索引值按一定的算法,存入一个树形的数据结构中,相信学过数据结构的童鞋都对当初学习二叉树这种数据结构的经历记忆犹新,反正愚安我当时为了软考可是被这玩意儿好好地折腾了一番,不过那次考试好像没怎么考这个。如二叉树一样,每次查询都是从树的入口root开始,依次遍历node,获取leaf。
BTREE在MyISAM里的形式和Innodb稍有不同
在 Innodb里,有两种形态:一是primary key形态,其leaf node里存放的是数据,而且不仅存放了索引键的数据,还存放了其他字段的数据。二是secondary index,其leaf node和普通的BTREE差不多,只是还存放了指向主键的信息.
而在MyISAM里,主键和其他的并没有太大区别。不过和Innodb不太一样的地方是在MyISAM里,leaf node里存放的不是主键的信息,而是指向数据文件里的对应数据行的信息.
RTREE
RTREE在mysql很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有MyISAM、BDb、InnoDb、NDb、Archive几种。
相对于BTREE,RTREE的优势在于范围查找.
各种索引的使用情况
(1)对于BTREE这种Mysql默认的索引类型,具有普遍的适用性
(2)由于FULLTEXT对中文支持不是很好,在没有插件的情况下,最好不要使用。其实,一些小的博客应用,只需要在数据采集时,为其建立关键字列表,通过关键字索引,也是一个不错的方法,至少愚安我是经常这么做的。
(3)对于一些搜索引擎级别的应用来说,FULLTEXT同样不是一个好的处理方法,Mysql的全文索引建立的文件还是比较大的,而且效率不是很高,即便是使用了中文分词插件,对中文分词支持也只是一般。真要碰到这种问题,Apache的Lucene或许是你的选择。
(4)正是因为hash表在处理较小数据量时具有无可比拟的素的优势,所以hash索引很适合做缓存(内存数据库)。如mysql数据库的内存版本Memsql,使用量很广泛的缓存工具Mencached,NoSql数据库redis等,都使用了hash索引这种形式。当然,不想学习这些东西的话Mysql的MEMORY引擎也是可以满足这种需求的。
(5)至于RTREE,愚安我至今还没有使用过,它具体怎么样,我就不知道了。有RTREE使用经历的同学,到时可以交流下!