无线传感网络实验指导书(无线传感网络演示实验)

http://www.itjxue.com  2023-01-31 20:51  来源:未知  点击次数: 

大家有什么好的无线传感器网络方面的书籍推荐下,希望里面介绍节点定位技术的多些,在线等!

ZigBee06网络与无线定位实战

ZigBee2007/PRO协议栈实验与实践

ZigBee无线网络技术入门与实战

从后面到前面 最后的是基础,第二本是进阶,第一本是定位的应用。

这三本书 在无线龙网站有推荐

无线传感器网络中的部署问题,200分!!追加!!

无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。

基于虚拟势场的有向传感器网络覆盖增强算法?

摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.

关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强

中图法分类号: TP393 文献标识码: A

覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.

目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[2?5].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],

即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、

重新调整节点分布[8?11]或添加新节点[11]等方法实现传感器网络覆盖增强.

实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.

在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.

本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.

1 有向传感器网络覆盖增强问题

本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.

1.1 方向可调感知模型

不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.

定义1. 方向可调感知模型可用一个四元组?P,R, ,??

表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节

点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;?表示边界距离传感向量 的传感夹角,2?代表传感区域视角,记作FOV.

特别地,当?=?时,传统的全向感知模型是方向可调感知模型的一个特例.

若点P1被有向传感器节点vi覆盖成立,记为vi?P1,当且仅当满足以下条件:

(1) ,其中, 代表点P1到该节点的欧氏距离;

(2) 与 间夹角取值属于[??,?].

判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1

被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.

1.2 有向传感器网络覆盖增强问题的分析与定义

在研究本文内容之前,我们需要作以下必要假设:

A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角(?)参数规格分别相同;

A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;

A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.

假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2?]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为?R2,则每个传感器节点能监测整个目标区域的概率为?R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])

(1)

由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为

(2)

当网络覆盖率分别为p0和p0+?p时,所需部署的传感器节点数目分别为ln(1?p0)/?,ln(1?(p0+?p))/?.其中, ?=ln(S??R2)?lnS.因此,传感器节点数目差异?N由公式(3)可得,

(3)

当目标区域面积S、节点传感半径R和传感夹角?一定时,?为一常数.此时,?N与p0,?p满足关系如图2所示(S=500?500m2,R=60m,?=45o).从图中我们可以看出,当p0一定时,?N随着?p的增加而增加;当?p一定时,?N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大?p时,则需多部署?N个节点(p0取值较大时(?80%),?p取值每增加1%,?N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+?p,大量节省了传感器网络部署成本.

设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)?Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表

示如下:

(4)

因此,有向传感器网络覆盖增强问题归纳如下:

问题:求解一组 ,使得对于初始的 ,有 取值

接近最大.

Fig.2 The relation among p0, ?p and ?N

图2 p0,?p和?N三者之间的关系

2 基于虚拟势场的覆盖增强算法

2.1 传统虚拟势场方法

虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Poduri等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.

上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.

2.2 基于虚拟势场的有向传感器网络覆盖增强算法

在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).

为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin?/3?.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.

Fig.3 Moving models of sensor node

图3 传感器节点的运动模型

Fig.4 The issue description of coverage enhancement in directional sensor networks

图4 有向传感器网络覆盖增强问题描述

2.2.1 受力分析

利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.

如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.

定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作?i.即?i={vj|Dis(vi,vj)?2R,i?j}.

我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).

(5)

其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);?ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.

质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .

(6)

通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心

点分别为c1,c2,c3和c4.以质心点c1为例,由于d12?2R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周?切线方向分量 的影响.

Fig.6 The force on centroid

图6 质心点受力

2.2.2 控制规则(control law)

本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.

质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:

(1) 运动学约束

在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆

周?切线方向分量 的影响,只能绕其传感器节点作圆周运动.

质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长?t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.

(2) 动力学约束

动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:

? 每个时间步长?t内,质心点所受合力与转动方向及弧长之间的关系;

? 质心点运动的静止条件.

在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长?t内,质心点转动的方向沿所受合力在圆周?切线方向分量,转动大小不是任意的,而是具有固定转动角度??.采用上述方法的原因有两个:

? 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.

? 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).

固定转动角度??取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.

当质心点所受合力沿圆周?切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周?上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它

未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会

因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.

当质心点围绕O点附近往复振动时,其受合力的切向分量很

小.因此,我们设定受力门限?,当 (本文取?=10e?6),即可认

定质心点已达到稳定状态,无须再运动.经过数个时间步长?t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该

组解通常为本文覆盖增强的较优解.

2.3 算法描述

基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:

输入:节点vi及其邻居节点的位置和传感方向信息.

输出:节点vi最终的传感方向信息 .

1. t?0; //初始化时间步长计数器

2. 计算节点vi相应质心点ci初始位置 ;

3. 计算节点vi邻居节点集合?i,M表示邻居节点集合中元素数目;

4. While (1)

4.1 t?t+1;

4.2 ;

4.3 For (j=0; jM; j++)

4.3.1 计算质心点cj对ci的当前斥力 ,其中,vj??i;

4.3.2 ;

4.4 计算质心点ci当前所受合力 沿圆周?切线分量 ;

4.5 确定质心点ci运动方向;

4.6 If ( ) Then

4.6.1 质心点ci沿 方向转动固定角度??;

4.6.2 调整质心点ci至新位置 ;

4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;

4.7 Sleep (?t);

5. End.

3 算法仿真与性能分析

我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.

Table 1 Experimental parameters

表1 实验参数

Parameter Variation

Target area S 500?500m2

Area coverage p 0~1

Sensor number N 0~250

Sensing radius Rs 0~100m

Sensing offset angel ? 0o~90o

3.1 实例研究

在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500?500m2的目标区域内,我们部署传感半径R=60m、传感夹角?=45o的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,

.

针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.

(a) Initial coverage, p0=65.74%

(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%

(b) 第10个时间步长,p10=76.03%

(c) The 20th time step, p20=80.20%

(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%

(d) 第30个时间步长,p30=81.45%

Fig.8 Coverage enhancement using PFCEA algorithm

图8 PFCEA算法实现覆盖增强

直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.

图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.

网络覆盖性能可以显著地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.

3.2 收敛性分析

为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,?=45o, ??=5o.

Table 2 Experimental data for convergence analysis

表2 实验数据收敛性分析

(%)

(%)

1 50 41.28 52.73 24

2 70 52.74 64.98 21

3 90 60.76 73.24 28

4 110 65.58 78.02 27

分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显著的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.

3.3 仿真分析

在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角?和(质心点)转动角度??.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.

A. 节点规模N、传感半径R以及传感角度?

我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和?一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,?p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,?p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如?60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.

另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显著.随着传感半径或传感角度的增加,?p不断增加.当R=70m且?=45o时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.

(c) The effect of sensing offset angle ?, other parameters meet N=100, R=40m, ??=5o

(c) 传感角度?的影响,其他实验参数满足:N=100,R=40m,??=5o

无线传感器网络的特点与应用

无线传感器网络是一种新型的传感器网络,其主要是由大量的传感器节点组成,利用无线网络组成一个自动配置的网络系统,并将感知和收集到的信息发给管理部门。目前无线传感器网络在军事、生态环境、医疗和家居方面都有一定应用,未来无线传感器网络的发展前景将是不可估量的。

一、无线传感器网络的特点

(一)节点数量多

在监测区通常都会安置许多传感器节点,并通过分布式处理信息,这样就能够提高监测的准确性,有效获取更加精确的信息,并降低对节点传感器的精度要求。此外,由于节点数量多,因此存在许多冗余节点,这样就能使系统的容错能力较强,并且节点数量多还能够覆盖到更广阔的监测区域,有效减少监测盲区。

(二)动态拓扑

无线传感器网络属于动态网络,其节点并非固定的。当某个节电出现故障或是耗尽电池后,将会退出网络,此外,还可能由于需要而被转移添加到其他的网络当中。

(三)自组织网络

无线传感器的节点位置并不能进行精确预先设定。节点之间的相互位置也无法预知,例如通过使用飞机播散节点或随意放置在无人或危险的区域内。在这种情况下,就要求传感器节点自身能够具有一定的组织能力,能够自动进行相关管理和配置。

(四)多跳路由

无线传感网络中,节点之间的距离通常都在几十到几百米,因此节点只能与其相邻的节点进行直接通信。如果需要与范围外的节点进行通信,就需要经过中间节点进行路由。无线传感网络中的多跳路由并不是专门的路由设备,所有传输工作都是由普通的节点完成的。

(五)以数据为中心

无线传感网络中的节点均利用编号标识。由于节点是随机分布的,因此节点的编号和位置之间并没有联系。用户在查询事件时,只需要将事件报告给网络,并不需要告知节点编号。因此这是一种以数据为中心进行查询、传输的方式。

(六)电源能力局限性

通常都是用电池对节点进行供电,而每个节点的能源都是有限的,因此一旦电池的能量消耗完,就是造成节点无法再进行正常工作。

二、无线传感器网络的应用

(一)环境监测应用

无线传感器可以用于进行气象研究、检测洪水和火灾等,在生态环境监测中具有明显优势。随着我国市场经济的不断发展,生态环境污染问题也越来越严重。我国是一个幅员辽阔、资源丰富的农业大国,因此在进行农业生产时利用无线传感器进行对生产环境变化进行监测能够为农业生产带来许多好处,这对我国市场经济的'不断发展有着重要意义。

(二)医疗护理应用

无线传感器网络通过使用互联网络将收集到的信息传送到接受端口,例如一些病人身上会有一些用于监测心率、血压等的传感器节点,这样医生就可以随时了解病人的病情,一旦病人出现问题就能够及时进行临时处理和救治。在医疗领域内传感器已经有了一些成功案例,例如芬兰的技术人员设计出了一种可以穿在身上的无线传感器系统,还有SSIM(Smart Sensors and Integrated Microsystems)等。

(三)智能家居建筑应用

文物保护单位的一个重要工作就是要对具有意义的古老建筑实行保护措施。利用无线传感器网络的节点对古老建筑内的温度是、湿度、关照等进行监测,这样就能够对建筑物进行长期有效的监控。对于一些珍贵文物的保存,对保护地的位置、温度和湿度等提前进行检测,可以提高展览品或文物的保存品质。例如,英国一个博物馆基于无线传感器网络设计了一个警报系统,利用放在温度底部的节点检测灯光、振动等信息,以此来保障文物的安全[5]。

目前我国基础建设处在高速发展期,建设单位对各种建设工程的安全施工监测越来越关注。利用无线传感器网络使建筑能够检测到自身状况并将检测数据发送给管理部门,这样管理部门就能够及时掌握建筑状况并根据优先等级来处理建筑修复工作。

另外,在家具或家电汇中设置无线传感器节点,利用无线网络与互联网络,将家居环境打造成一个更加舒适方便的空间,为人们提供更加人性化和智能化的生活环境。通过实时监测屋内温度、湿度、光照等,对房间内的细微变化进行监测和感知,进而对空调、门窗等进行智能控制,这样就能够为人们提供一个更加舒适的生活环境。

(四)军事应用

无线传感器网络具有低能耗、小体积、高抗毁等特性,且其具有高隐蔽性和高度的自组织能力,这为军事侦察提供有效手段。美国在20世纪90年代就开始在军事研究中应用无线传感器网络。无线传感器网络在恶劣的战场内能够实时监控区域内敌军的装备,并对战场上的状况进行监控,对攻击目标进行定位并能够检测生化武器。

目前无线传感器网络在全球许多国家的军事、研究、工业部门都得到了广泛的关注,尤其受到美国国防部和军事部门的重视,美国基于C4ISR又提出了C4KISR的计划,对战场情报的感知和信息综合能力又提出新的要求,并开设了如NSOF系统等的一系列军事无线传感器网络研究。

总之,随着无线传感器网络的研究不断深入和扩展,人们对无线传感器的认识也越来越清晰,然而目前无线传感器网络的在技术上还存在一定问题需要解决,例如存储能力、传输能力、覆盖率等。尽管无线传感器网络还有许多技术问题待解决使得现在无法广泛推广和运用,但相信其未来发展前景不可估量。

ESpot是什么

ESPOT是一种新型的无线传感网络设备,它采用了最先进的无线传感器技术和无线通讯技术。它为全世界营造了一个能够迎合未来小型传感设备实践和开发的软件和硬件研究平台,它还为学校在教学科研等诸多方面提供了很宽广的教学平台和研发契机。

采用ESPOT,我们可以很方便的搭建出复杂的无线传感网络。该无线传感器网络可以由大量相互协作的ESPOT组成,每个ESPOT都具有有限的感知、计算及无线通信能力。当将这些ESPOT节点以适当的方式组成网络,并将它们的输出有机地关联与融合时,整个网络可提供远高于单个节点的强大功能。西普科技将此产品应用于无线传感网络实验室解决方案中。相较于目前市场上少量基于C语言程序控制的无线传感模块产品,ESPOT采用了创新的Squawk虚拟机和Java高级语言控制技术,因此基于ESPOT无线传感网络实验室解决方案操作更简便,管理更便捷。

大学生创新创业实验设备

产品创新点

● 实验箱采用纯模块化设计,单个传感器节点分为节点底板、射频模块和传感器模块三部分,各模块均采用可插拔方式,扩展性强,易维修维护升级。

● 实验箱标配WiFi、Zigbee、433MHz、蓝牙等主流局域网无线通信模块。

● 传感器种类丰富涵盖了电容式传感器、电阻式传感器、光敏传感器、气敏传感器等十余种不同种类的传感器。

● 实验箱搭配高效能Cortex-A9开发板搭载Android操作系统,可独立Android App软件开发平台使用,大大增加了实验箱的实用性。

● 在一个实验箱内完整的体现了物联网的三层结构-感知层、网络层和应用层。从硬件应用到软件设计,一步步引导学生了解整个物联网体系结构。针对不同专业的学生设计了不同的实验题目,包含内容丰富多彩。

● 完整详尽的实验指导书,并提供硬件设备原理图,应用程序源码供学生学习和二次开发。

● 实验箱紧密围绕教育部物联网工程专业培训计划教学大纲进行设计,可以满足单片机原理与技术、传感器原理及应用、、物联网通信技术等物联网工程专业的专业课程实验开设。 飞瑞敖IOT-L02-05型物联网综合实验箱可满足物联网工程专业单片机原理与技术、传感器原理与应用、Zigbee无线传感网原理与应用以及物联网通信技术等专业课程的实验开设。

(责任编辑:IT教学网)

更多

推荐Frontpage教程文章