机器人定位方法,机器人定位方法有哪几种

http://www.itjxue.com  2023-01-17 02:00  来源:未知  点击次数: 

生产线上机器人机械臂是怎么实现精确定位的?

最直接的方法是采用非接触位移测量传感器,安装到机械手上,测量距离被测物体的距离,从而精确定位控制机械手动作。

非接触位移测量传感器有以下特点“

◆量程最小2mm,最大1250mm

◆量程起始距离最小10mm,最大260mm

◆频率响应:2K、5K、8K、9.4K;

◆分辨率最高0.01%,线性度最高0.1%

◆支持多个传感器同步采集

◆支持特殊量程

◆特殊应用(如路面平整度,高温被测体,管道内径,石油钻杆内外螺纹测量等)

◆针对串口,提供了运行应用的DLL开发库,方便用户开发应用软件

◆非接触位移精密测量。

扫地机器人的定位系统有哪些呢?

定位技术就好比人的感官,让扫地机器人能准确知道自己的位置,目前使用的技术有RPS激光定位系统、vSLAM图像位移定位系统、无线载波室内定位系统。

1、RPS激光定位系统

通过360°不断旋转的激光探头,测量扫地机器人与环境距离变化经过计算得出机器人与信标的相对位置,再代入已知的信标位置坐标,解出机器人的绝对坐标来实现定位。这种定位系统最大的缺点就是探头价格昂贵,而且工作时需要不停地旋转,寿命很有限。

2、vSLAM图像位移定位系统

通过扫地机器人配备高清摄像头向上拍摄天花板图像的偏差变化定位坐标,这种移定位系统对天花板上有参照物的要求比较高,如果参照物的特征信息或者几何形状模糊,都会大大影响定位精度。

3、无线载波室内定位系统

利用三点式导航的原理,根据测量得到的机器人与信标的距离来确定移动机器人位置的方法。三边测量定位系统至少需要3个已知位置的发射器(或接收器),而接收器(或发射器)安装在移动机器人上。三角测量和三边测量的思路大体一致,在扫地机器人定位中则通过充电座和机器人无线载波探头双重测量距离变化定位坐标。这种定位方式得到的坐标精度较高。台湾的proscenic和美国的IRobot这两个品牌的扫地机器人选用的就是这种方式的定位系统。

扫地机器人是如何做室内定位的?

扫地机器人的定位都是室内定位,其要求定位精度高(最少在亚米级),实时性好,GPS、基站定位等方法无法满足。扫地机器人定位总体上可以分为相对定位和绝对定位,下面我们分别来看。

相对定位法

航位推算法(Dead-Reckoning Method)是一种经典的相对定位法,也是扫地机器人目前最为广泛使用的一种定位方法。它利用机器人装备的各种传感器获取机器人的运动动态信息,通过递推累计公式获得机器人相对初试状态的估计位置。航位推算较常使用的传感器一般有:码盘,惯性传感器(如陀螺仪、加速度计)等。

码盘法一般使用安装在车轮上的光电码盘记录车轮的转数,进而获得机器人相对于上一采样时刻位置和姿态的改变量,通过这些位移量的累积就可以估计机器人的位置。码盘法优点是方法简单、价格低廉,但其容易受标定误差、车轮打滑、颠簸等因素影响,误差较大。但是由于码盘价格便宜,简单易用,可用于机器人较短时间距离内的位置估计。

惯性传感器使用陀螺仪和加速度计得到机器人的角加速度和线加速度信息,通过积分获得机器人的位置信息。一般情况下,使用惯性传感器的定位精度高于码盘,但是其精度也要受陀螺仪漂移、标定误差、敏感度等问题影响。无论是使用码盘还是惯性传感器,它们都存在一个共同的缺点:有累积误差,随着行驶时间、距离的不断增加,误差也不断增大。因此相对定位法不适合于长时间、长距离的精确定位。

绝对定位法

绝对定位法是指机器人通过获得外界一些位置等己知的参照信息,通过计算自己与参照信息之间的相互关系,进而解算出自己的位置。。绝对定位主要采用基于信标的定位、环境地图模型匹配定位、视觉定位等方法。

基于信标的定位

信标定位原指在航海或航空中利用无线电基站发出的无线电波实现定位与导航的技术。对机器人室内定位而言是指,机器人通过各种传感器接收或观测环境中已知位置的信标,经过计算得出机器人与信标的相对位置,再代入已知的信标位置坐标,解出机器人的绝对坐标来实现定位。用于定位的信标需满足3个条件:

(1)信标的位置固定且信标的绝对坐标已知;

(2)信标具有主被动特征,易于辨识;

(3)信标位置便于从各方向观测。

信标定位方式主要有三边测量和三角测量 。三边测量是根据测量得到的机器人与信标的距离来确定移动机器人位置的方法。三边测量定位系统至少需要3个已知位置的发射器(或接收器),而接收器(或发射器)安装在移动机器人上。三角测量和三边测量的思路大体一致,通过测量移动机器人与信标之间的角度来进行定位。

基于信标的定位系统依赖于一系列环境中已知特征的信标,并需要在移动机器人上安装传感器对信标进行观测。用于信标观测的传感器有很多种,比如超声波传感器、激光雷达、视觉传感器等。可以实时测量,没有累进误差,精度相对较高、稳定性好,提供快速、稳定、精确的绝对位置信息,但安装和维护信标花费很高。市场上已经出现较为成熟的基于信标定位的信标定位扫地机器人,如Proscenic的模拟GPS卫星三点定位技术,iRobot的Northstar导航定位技术,但由于其价格较为昂贵,它们都用于相对高端的产品中。

环境地图模型匹配定位

是机器人通过自身的各种传感器探测周围环境,利用感知到的局部环境信息进行局部的地图构造,并与其内部事先存储的完整地图进行匹配。通过匹配关系获得自己在全局环境中的位置,从而确定自身的位置。该方法由于有严格的条件限制,只适于一些结构相对简单的环境。

基于视觉的定位

科学研究统计表明,人类从外界获得信息量约有75%来自视觉,视觉系统是机器人与人类感知环境最接近的探测方式。受益于模式识别、机器视觉的发展,基于视觉的机器人定位近年来成为研究热点。

基于视觉的定位主要分为单目视觉、双目视觉。

单目视觉无法直接得到目标的三维信息,只能通过移动获得环境中特征点的深度信息,适用于工作任务比较简单且深度信息要求不高的情况,如果利用目标物体的几何形状模型,在目标上取3个以上的特征点也能够获取目标的位置等信息,但定位精度不高。

双目立体视觉三维测量是基于视差原理的,即左相机像面上的任意一点只要能在右相机像面,上找到对应的匹配点,就可以确定出该点的三维信息,从而获取其对应点的三维坐标。目前,基于视觉定位的扫地机器人也已有产品推出,iRobot和Dyson分别于2015年及2014年推出了基于视觉定位的高端扫地机器人 RoomBa980和360Eye。

哪位大神能提供一个室内机器人精确定位的方案

室内机器人精确定位方案,这个需要看一下具体的定位精度,米级定位精度的话可以优先考虑蓝牙室内定位方案,如果对定位精度有要求,需要厘米级定位精度的话,就可以考虑UWB室内定位方案。

蓝牙定位:蓝牙定位基于RSSI(Received Signal Strength Indication,信号场强指示)定位原理。蓝牙室内技术是利用在室内安装的若干个蓝牙局域网接入点,把网络维持成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微微网的主设备,然后通过测量信号强度获得用户的位置信息。根据定位端的不同,蓝牙定位方式分为网络侧定位和终端侧定位。

UWB定位:超宽带(UWB)定位技术是一种全新的、与传统通信定位技术有极大差异的新技术。它利用事先布置好的已知位置的锚节点和桥节点,与新加入的盲节点进行通讯,并利用TDOA定位算法,通过测量出不同基站与移动终端的传输时延差来进行定位。

蓝牙定位与UWB定位对比:

首先是工程师最为关注的定位精度问题:目前蓝牙室内定位方案能够实现米级的定位精度;UWB定位已经能够实现厘米级高精度定位。

定位硬件:顾名思义,蓝牙室内定位方案的实现必然是建立在蓝牙室内定位产品的基础上,主要定位硬件包括蓝牙网关、蓝牙Beacon、手环、手表等蓝牙标签以及智能手机、无线局域网及后端数据服务器等。UWB定位硬件产品主要包括定位引擎服务器、智能终端、POE交换机、UWB基站、UWB标签、UWB模块、软件接口等。

应用领域:蓝牙定位主要应用于对人、物定位精度要求一般的室内定位,用于在一定空间范围内获取人或物的大致位置信息;UWB定位则主要应用于室内高精度定位,用于在一定空间范围内获取人或物的精确位置信息。

定位环境搭建:蓝牙定位布局相对简单,只要注意间隔范围就可以了,UWB定位布局相比蓝牙定位要复杂一些,因为涉及到UWB基站的安装。

最后,小编将SKYLAB室内定位工程师总结的各个领域室内定位解决方案选择要点告诉大家:室内定位从用途方向可以划分消费类和工业类。消费类主要实现室内人员引导、消费推送、安全监控、智能家居等商业应用。工业类主要实现消防安全、人员监控、设备引导、财产安全、智能工厂等应用。有些是侧重于单纯的室内定位,而有些则更侧重于导航功能、历史轨迹、电子围栏等功能,因此需要有针对性选择方案。单纯的室内定位、导航,对定位精度要求不高,可以优先选择蓝牙定位方案,侧重历史轨迹、电子围栏这些功能则可以优先考虑UWB定位方案;希望能够帮助到各位有室内定位方案需求的客户们。

机器人抓取时怎么定位的?用什么感测器来检测

机器人抓取时怎么定位的?用什么感测器来检测

机械手动作是靠伺服电机上的编码器反馈到工控机处理中心讯号与预设定引数比较、修正再输出给伺服电机执行精确定位的。也就是说靠预先程式设计决定的,不是靠感测器定位的。程式设计可解决机械手三维空间动作精确方向、速度、执行时间…………

依靠定位点以及零点位置,机器手定期修正累加误差,抓取最高阶的是应用影象技术,配合物料定位点。

一般是照相定位的。感测器是COMS或者CCD。

用预先程式设计及其执行中该伺服电机轴尾的编码器反馈讯号至计算中心精确修整偏差定位的。

机器人家上了解到,机器人领域的视觉(Machine Vision)跟计算机领域(Computer Vision)的视觉有一些不同:机器视觉的目的是给机器人提供操作物体的资讯。所以,机器视觉的研究大概有这几块:

物体识别(Object Recognition):在影象中检测到物体型别等,这跟 CV 的研究有很大一部分交叉;

位姿估计(Pose Estimation):计算出物体在摄像机座标系下的位置和姿态,对于机器人而言,需要抓取东西,不仅要知道这是什么,也需要知道它具体在哪里;

相机标定(Camera Calibration):因为上面做的只是计算了物体在相机座标系下的座标,我们还需要确定相机跟机器人的相对位置和姿态,这样才可以将物 *** 姿转换到机器人位姿。

当然,我这里主要是在物体抓取领域的机器视觉;SLAM 等其他领域的就先不讲了。

由于视觉是机器人感知的一块很重要内容,所以研究也非常多了,我就我了解的一些,按照由简入繁的顺序介绍吧:

0. 相机标定

这其实属于比较成熟的领域。由于我们所有物体识别都只是计算物体在相机座标系下的位姿,但是,机器人操作物体需要知道物体在机器人座标系下的位姿。所以,我们先需要对相机的位姿进行标定。 内参标定就不说了,参照张正友的论文,或者各种标定工具箱; 外参标定的话,根据相机安装位置,有两种方式:

Eye to Hand:相机与机器人极座标系固连,不随机械臂运动而运动

Eye in Hand:相机固连在机械臂上,随机械臂运动而运动 两种方式的求解思路都类似,首先是眼在手外(Eye to Hand)

只需在机械臂末端固定一个棋盘格,在相机视野内运动几个姿态。由于相机可以计算出棋盘格相对于相机座标系的位姿 、机器人运动学正解可以计算出机器人底座到末端抓手之间的位姿变化 、而末端爪手与棋盘格的位姿相对固定不变。 这样,我们就可以得到一个座标系环

而对于眼在手上(Eye in Hand)的情况,也类似,在地上随便放一个棋盘格(与机器人基座固连),然后让机械臂带着相机走几个位姿,然后也可以形成一个 的座标环。

1. 平面物体检测

这是目前工业流水线上最常见的场景。目前来看,这一领域对视觉的要求是:快速、精确、稳定。所以,一般是采用最简单的边缘提取+边缘匹配/形状匹配的方法;而且,为了提高稳定性、一般会通过主要打光源、采用反差大的背景等手段,减少系统变数。

目前,很多智慧相机(如 cognex)都直接内嵌了这些功能;而且,物体一般都是放置在一个平面上,相机只需计算物体的 三自由度位姿即可。 另外,这种应用场景一般都是用于处理一种特定工件,相当于只有位姿估计,而没有物体识别。 当然,工业上追求稳定性无可厚非,但是随着生产自动化的要求越来越高,以及服务类机器人的兴起。对更复杂物体的完整位姿 估计也就成了机器视觉的研究热点。

2. 有纹理的物体

机器人视觉领域是最早开始研究有纹理的物体的,如饮料瓶、零食盒等表面带有丰富纹理的都属于这一类。 当然,这些物体也还是可以用类似边缘提取+模板匹配的方法。但是,实际机器人操作过程中,环境会更加复杂:光照条件不确定(光照)、物体距离相机距离不确定(尺度)、相机看物体的角度不确定(旋转、仿射)、甚至是被其他物体遮挡(遮挡)。

幸好有一位叫做 Lowe 的大神,提出了一个叫做 SIFT (Scale-invariant feature transform)的超强区域性特征点: Lowe, David G. "Distinctive image features from scale-invariant keypoints."International journal of puter vision 60.2 (2004): 91-110. 具体原理可以看上面这篇被引用 4万+ 的论文或各种部落格,简单地说,这个方法提取的特征点只跟物体表面的某部分纹理有关,与光照变化、尺度变化、仿射变换、整个物体无关。 因此,利用 SIFT 特征点,可以直接在相机影象中寻找到与资料库中相同的特征点,这样,就可以确定相机中的物体是什么东西(物体识别)。

对于不会变形的物体,特征点在物体座标系下的位置是固定的。所以,我们在获取若干点对之后,就可以直接求解出相机中物体与资料库中物体之间的单应性矩阵。 如果我们用深度相机(如Kinect)或者双目视觉方法,确定出每个特征点的 3D 位置。那么,直接求解这个 PnP 问题,就可以计算出物体在当前相机座标系下的位姿。

↑ 这里就放一个实验室之前毕业师兄的成果 当然,实际操作过程中还是有很多细节工作才可以让它真正可用的,如:先利用点云分割和欧氏距离去除背景的影响、选用特征比较稳定的物体(有时候 SIFT 也会变化)、利用贝叶斯方法加速匹配等。 而且,除了 SIFT 之外,后来又出了一大堆类似的特征点,如 SURF、ORB 等。

3. 无纹理的物体

好了,有问题的物体容易解决,那么生活中或者工业里还有很多物体是没有纹理的:

我们最容易想到的就是:是否有一种特征点,可以描述物体形状,同时具有跟 SIFT 相似的不变性? 不幸的是,据我了解,目前没有这种特征点。 所以,之前一大类方法还是采用基于模板匹配的办法,但是,对匹配的特征进行了专门选择(不只是边缘等简单特征)。

简单而言,这篇论文同时利用了彩色影象的影象梯度和深度影象的表面法向作为特征,与资料库中的模板进行匹配。 由于资料库中的模板是从一个物体的多个视角拍摄后生成的,所以这样匹配得到的物 *** 姿只能算是初步估计,并不精确。 但是,只要有了这个初步估计的物 *** 姿,我们就可以直接采用 ICP 演算法(Iterative closest point)匹配物体模型与 3D 点云,从而得到物体在相机座标系下的精确位姿。

当然,这个演算法在具体实施过程中还是有很多细节的:如何建立模板、颜色梯度的表示等。另外,这种方法无法应对物体被遮挡的情况。(当然,通过降低匹配阈值,可以应对部分遮挡,但是会造成误识别)。 针对部分遮挡的情况,我们实验室的张博士去年对 LineMod 进行了改进,但由于论文尚未发表,所以就先不过多涉及了。

4. 深度学习

由于深度学习在计算机视觉领域得到了非常好的效果,我们做机器人的自然也会尝试把 DL 用到机器人的物体识别中。

首先,对于物体识别,这个就可以照搬 DL 的研究成果了,各种 CNN 拿过来用就好了。有没有将深度学习融入机器人领域的尝试?有哪些难点? - 知乎 这个回答中,我提到 2016 年的『亚马逊抓取大赛』中,很多队伍都采用了 DL 作为物体识别演算法。 然而, 在这个比赛中,虽然很多人采用 DL 进行物体识别,但在物 *** 姿估计方面都还是使用比较简单、或者传统的演算法。似乎并未广泛采用 DL。 如 @周博磊 所说,一般是采用 semantic segmentation neork 在彩色影象上进行物体分割,之后,将分割出的部分点云与物体 3D 模型进行 ICP 匹配。

当然,直接用神经网路做位姿估计的工作也是有的

它的方法大概是这样:对于一个物体,取很多小块 RGB-D 资料(只关心一个patch,用区域性特征可以应对遮挡);每小块有一个座标(相对于物体座标系);然后,首先用一个自编码器对资料进行降维;之后,用将降维后的特征用于训练Hough Forest。

5. 与任务/运动规划结合

这部分也是比较有意思的研究内容,由于机器视觉的目的是给机器人操作物体提供资讯,所以,并不限于相机中的物体识别与定位,往往需要跟机器人的其他模组相结合。

我们让机器人从冰箱中拿一瓶『雪碧』,但是这个 『雪碧』 被『美年达』挡住了。 我们人类的做法是这样的:先把 『美年达』 移开,再去取 『雪碧』 。 所以,对于机器人来说,它需要先通过视觉确定雪碧在『美年达』后面,同时,还需要确定『美年达』这个东西是可以移开的,而不是冰箱门之类固定不可拿开的物体。 当然,将视觉跟机器人结合后,会引出其他很多好玩的新东西。由于不是我自己的研究方向,所以也就不再班门弄斧了。

机器作定位由先由工程式设计决定空前、左右、位置定位精度由伺服电机同轴尾端编码传器反馈讯号经伺服电机驱卡至处理处理再输作自微量调整

机器人多工位动作及其执行中定位全部由人工编写操作程式而决定的,此与感测器暂不搭界。若要根据生产工艺改进,则要重新编写程式,或在原程式中作修改调整。

机器人抓取定位是预先程式设计的,工控机输出带动伺服电机精确定位,包括伺服电机编码器反馈讯号经电机驱动卡直至工控机进一步调整。若用感测器检测定位误差极大,根本不可能细微修正定位精度。

机器人抓取目前最常用的是通过视觉定位,CCD/CMOS感测器拍摄当前视野内图片,找到MARK点,算出偏移的座标和角度,再通过网口或者串列埠将资料反馈到机器人,机器人作出相应修正

----------众合航迅科技有限公司 邓经理为您解答

机器人动作定位由先由人工程式设计决定它在空中前后、左右、上下位置的。定位精度由伺服电机同轴尾端编码感测器反馈讯号经此伺服电机驱动卡至处理中心处理后再输出作自动微小量调整

(责任编辑:IT教学网)

更多

推荐Illustrator教程文章