数控磨床简单编程操作(数控磨床编程入门自学视频教程)

http://www.itjxue.com  2023-02-27 16:50  来源:未知  点击次数: 

数控车床一般操作流程

操作流程

1.书写或编程:加工前应首先编制工件的加工程序,如果工件的加工程序较长且比较复杂,最好不在机床上编程,而采用编程机编程或手动编程,这样可以避免占用机时,对于短程序,也应该写在程序单上。

2.开机:一般是先开机床,再开系统。有的设计二者是互锁,机床不通电就不能在CRT上显示信息。

3.回参考点:对于增量控制系统的机床,必须首先执行这一步,以建立机床各坐标的移动标准。

4.程序的编辑输入:输入的程序若需要修改,则要进行编辑操作。此时,将方式选择开关置于EDIT位置,利用编辑键进行增加、删除、更改。

5.机床锁住,运行程序 此步骤是对程序进行检查,若有错误,则重新编辑。

6.上工件、找正、对刀 采用手动增量移动,连续移动或采用手播盘移动车床。将对刀点对到程序的起始点,并对好刀具的基准。

7.启动坐标进给,进行连续加工 一般是采用存储器中程序加工,这种方式比采用纸带上程序加工故障率低。

8.操作显示:利用CRT的各个画面显示工作台或刀具的位置、程序和机床的状态,以使操作工人监视加工情况。

9.程序输出:程序结束后,若程序有保存的必要,可以留在CNC的内存中,若程序太长,可以把内存中的程序输给外部设备保存。

10.零件检测、拆除 :在工件尚处于卡盘装夹的情况下,进行工件尺寸检测。

11.关机 :一般应先关机床,再关系统。

选用原则

前期准备

确定典型零件的工艺要求、加工工件的批量,拟定数控车床应具有的功能是做好前期准备,合理选用数控车床的前提条件:满足典型零件的工艺要求。

典型零件的工艺要求主要是零件的结构尺寸、加工范围和精度要求。根据精度要求,即工件的尺寸精度、定位精度和表面粗糙度的要求来选择数控车床的控制精度。 根据可靠性来选择,可靠性是提高产品质量和生产效率的保证。

数控机床的可靠性是指机床在规定条件下执行其功能时,长时间稳定运行而不出故障。即平均无故障时间长,即使出了故障,短时间内能恢复,重新投入使用。选择结构合理、制造精良,并已批量生产的机床。一般,用户越多,数控系统的可靠性越高。

机床附件及刀具

机床随机附件、备件及其供应能力、刀具,对已投产数控车床、车削中心来说是十分重要的。选择机床,需仔细考虑刀具和附件的配套性。

数控车床怎么编程?

简单例子:设计一个简单的轴类零件,要求轮廓只要有圆弧和直线,包含轮廓图。

G99?M08

M03?S1000?T0101

G00?X40?Z2

G71?U2?R1?F0.25?S1000?T0101?(此处S与T可以省略)

G71?P10?Q20?U1.0?W0.2

N10?G00?X0

G01?Z0?F0.1

X5

G03?X15?Z-5?R5?F0.1

G01?Z-13?F0.1

X22

X26?W-2

W-11

G02?X30?Z-41?R47?F0.1

G01?W-9?F0.1

G02?X38?W-4?R4?F0.1

N20?G01?W-10?F0.1

G00?X100?Z100

T0202?S1200

G00?X40??Z2

G70?P10?Q20

G00?X100?Z100

M30

数控车床是目前使用较为广泛的数控机床之一。它主要用于轴类零件或盘类零件的内外圆柱面、任意锥角的内外圆锥面、复杂回转内外曲面和圆柱、圆锥螺纹等切削加工,并能进行切槽、钻孔、扩孔、铰孔及镗孔等。

数控机床是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能,按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件。

如何学习数控磨床

学习数控磨床(在电脑上仿真学习):

1、 首先要下载 :斯沃数控仿真软件,这个网上很多

2、?解压后找到 SWCNC 后打开

3、 在弹出窗口中,选择好自己想练习的数控磨床后点击运行

4、 这样就进入操控界面了

5、 随便编了一个程序

6、 加工后的零件

7、 在编程之前,首先要分别在机床操作和工件操作菜单下设置好刀具和毛胚,设置好了还要对刀设置刀偏等。

8、 刀具库管理

9、 设置毛胚

数控机床编程步骤

数控机床编程步骤

数控机床程序编制又称数控编程,是指编程者根据零件图样和工艺文件的要求。以下是我精心准备的数控机床编程步骤,大家可以参考以下内容哦!

1.分析零件图样和工艺要求

分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:

1)确定该零件应安排在哪类或哪台机床上进行加工。

2)采用何种装夹具或何种装卡位方法。

3)确定采用何种刀具或采用多少把刀进行加工。

4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。

5)确定切削深度和宽度、进给速度、主轴转速等切削参数。

6)确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。

2.数值计算

根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。

3.编写加工程序单

在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。编程者除应了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的'加工程序。

4.制作控制介质,输入程序信息

程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。

5.程序检验

编制好的程序,在正式用于生产加工前,必须进行程序运行检查。在某些情况下,还需做零件试加工检查。根据检查结果,对程序进行修改和调整,检查修改再检查再修改……这往往要经过多次反复,直到获得完全满足加工要求的程序为止。

上述编程步骤中的各项工作,主要由人工完成,这样的编程方式称为“手式编程”。在各机械制造行业中,均有大量仅由直线、圆弧等几何元素构成的形状并不复杂的零件需要加工。这些零件的数值计算较为简单,程序段数不多,程序检验也容易实现,因而可采用手工编程方式完成编程工作。由于手工编程不需要特别配置专门的编程设备,不同文化程度的人均可掌握和运用,因此在国内外,手工编程仍然是一种运用十分普遍的编程方法。

6.自动编程

在航空、船舶、兵器、汽车、模具等制造业中,经常会有一些具有复杂形面的零件需要加工,有的零件形状虽不复杂,但加工程序很长。这些零件的数值计算、程序编写、程序校验相当复杂繁琐,工作量很大,采用手工编程是难以完成的。此时,应采用装有编程系统软件的计算机或专用编程机珲完成这些零件的编程工作。数控机床的程序编制由计算机完成的过程,称为自动编程。

在进行自动编程时,程序员所要做的工作是根据图样和工艺要求,使用规定的编程语言,编写零件加工源程序,并将其输入编程机,编程机自动对输入的信息进行处理,即可以自动计算刀具中心运动轨迹、自动编辑零件加工程序并自动制作穿孔带等。由于编程机多带有显示器,可自动绘出零件图形和刀具运动轨迹,程序员可检查程序是否正确,必要时可及时修改。采用自动编程方式可极大地减少编程者的工作量,大大提高编程效率,而且可以解决用手工编程无法解决的复杂零件的编程难题。

;

谁有数控磨床的VC++编程实例吗?

打开VC++6.0,按左上角菜单栏的“文件”--“新建”,打开如下界面

在左边的列表中选择“Win32 Console Application”,即win32控制台工程,控制台就类似windows中的cmd窗口,刚开始编程,选择创建这个工程就可以了。在右边输入工程名称,我在这里输入“FirstProgram”,位置选择一个存放该工程的文件夹,如果不放在默认的路径下,则点击右边的那个显示为“...”的按钮,然后自定义选择路径,我选择的路径是F:\Cpp。

然后点击确定,在接下来出现的对话框中选择“一个空工程”,点击完成即可,在后续的出现的窗口中点击“确定”。

这个时候一个空工程就创建完成了,我们的源代码文件将包含在这个工程中。我们现在开始创建源代码文件,点击软件左上角的“文件”--“新建”,然后出现刚才见到过的对话框,先选择上面标签中的“文件”,然后再选择下面列表中的“C++ Source File”,文件名输入hello.cpp,然后点击“确定”。

确定完后,右边的编辑区就会自动打开空白的hello.cpp文件,左边的工作区也可以看到整个工程的组织结构

接下来我们写一个简单的程序,在屏幕上显示“hello world!”,最经典的程序

#includeiostream

using namespace std;

int main()

{

cout"hello world!\n";

return 0;

}

然后按编辑区上方的按钮进行编译、链接,然后执行,具体如下图所示

执行结果如下图所示,我们用vc++6.0写的一个小程序就执行成功了

数控车床的操作方法

数控车床的操作方法

数控车床是使用较为广泛的数控机床之一。它主要用于轴类零件或盘类零件的内外圆柱面、任意锥角的内外圆锥面、复杂回转内外曲面和圆柱、圆锥螺纹等切削加工,并能进行切槽、钻孔、扩孔、铰孔及镗孔等。下面是我为大家整理出来的关于数控车床的一些操作方法,希望可以帮助到大家!

1.手工编程操作

将编制的加工程序输入数控系统,具体的操作方法是:先通过机械操作面板启动数控机床,接着由CRT/MDI面板输入加工程序,然后运行加工程序。

1)启动数控机床操作

①机床启动按钮ON

②程序锁定按钮OFF

2)编辑操作

①选择MDI方式或EDIT方式

②按(PRGRM)健

③输入程序名 键入程序地址符、程序号字符后按(INSRT)键。

④键入程序段

⑤键入程序段号、操作指令代码后按(INPUT)键。

3)运行程序操作

①程序锁定按钮ON

②选择自动循环方式

2.调用程序操作

调用已储存在数控系统中的加工程序,具体的操作方法先通过机械操作面板启动数控机床,接着调用系统内的加工程序,然后运行程序。

1)启动数控机床操作

①机床启动按钮ON

②程序锁定按钮OFF

2)调用程序操作

①选择MDI方式或EDIT方式

②按(PRGRM)键

③调用程序 键入程序地址符、程序号字符后按(INPUT)键。

3)运行程序操作

①程序锁定按钮ON

②选择自动循环方式

③按自动循环按钮

3.数控车床对刀操作

数控车床对刀方法有三种(图1):试切削对刀法、机械对刀法和光学对刀法。

数控车床对刀方法

1)试切削对刀法对刀原理

假设刀架在外圆刀所处位置换上切割刀,虽然刀架没有移动,刀具的坐标位置也没有发生变化,但两把刀尖不在同一位置上,如果不消除这种换刀后产生的刀尖位置误差,势必造成换刀后的切削加工误差。

数控车床对刀原理

换刀后刀尖位置误差的计算:

ΔX=X1-X2

ΔZ=Z1-Z2

根据对刀原理,数控系统记录了换刀后产生的刀尖位置误差ΔX、ΔZ,如果用刀具位置补偿的方法确定换刀后的刀尖坐标位置,这样能保证刀具对工件的切削加工精度。

2)基准刀对刀操作

①用外圆车刀切削工件端面,向数控系统输入刀尖位置的Z坐标。

②用外圆车刀切削工件外圆,测量工件的外圆直径,向数控系统输入该工件的外圆直径测量值,即刀尖位置的X坐标。

3)一般刀对刀操作

如图4所示,用切割刀的刀尖对准工件端面和侧母线的交点,向数控系统输入切割刀刀尖所在位置的Z坐标和X坐标。这样,数控系统记录了两把刀尖在同一位置上的不同坐标值,计算出换刀后一般刀与基准刀的刀尖位置偏差,并通过数控系统刀具位置偏差补偿来消除换刀后的刀尖位置偏差。

4.刀位偏置值的修改与应用

如果车削工件外圆后,工件的外圆直径大了0.30mm。对此,我们可不用修改程序,而通过修改刀位偏置值来解决,即在X方向把刀具位置的偏置值减小0.30mm,这样就很方便地解决了切削加工中产生的加工误差。

【拓展】

数控车床就业前景良好

如今,制造业对数控机床人才的需求大大增加,就业待遇优厚。很多企业反映,数控机床人才“一将难求”,因为抢手,数控机床人才的身价持续上涨,月收入都在1.5万元以上。据我了解,河北省邯郸市曲周县职教中心已经把数控机床专业作为重点发展专业,势必做强做大该专业,为中国制造输送一批批技能人才。

当下,数控机床作为工业4.0重要发展领域,已经成为主要工业国家重点竞争领域。中国数控机床产业在国家战略的支持下,近年来呈现出快速发展态势,技术追赶势头不可阻挡。在新一轮产业发展周期中,中国有望通过加大技术研发实现数控机床产业的弯道超车。因此,在产业发展大好的优势下,数控机床人才的就业前景将是一片光明。

数控机床的6大方向

1.可靠性最大化

数控机床的可靠性一直是用户最关心的主要指标。数控系统将采用更高集成度的电路芯片,利用大规模或超大规模的专用及混合式集成电路,以减少元器件的数量,来提高可靠性。通过硬件功能软件化,以适应各种控制功能的要求,同时采用硬件结构机床本体的模块化、标准化和通用化及系列化,使得既提高硬件生产批量,又便于组织生产和质量把关。还通过自动运行启动诊断、在线诊断、离线诊断等多种诊断程序,实现对系统内硬件、软件和各种外部设备进行故障诊断和报警。利用报警提示,及时排除故障;利用容错技术,对重要部件采用“冗余”设计,以实现故障自恢复;利用各种测试、监控技术,当生产超程、刀损、干扰、断电等各种意外时,自动进行相应的保护。

2.控制系统小型化

数控系统小型化便于将机、电装置结合为一体。目前主要采用超大规模集成元件、多层印刷电路板,采用三维安装方法,使电子元器件得以高密度安装,较大规模缩小系统的占有空间。而利用新型的彩色液晶薄型显示器替代传统的阴极射线管,将使数控操作系统进一步小型化。这样可以方便地将它安装在机床设备上,更便于对数控机床的操作使用。

3.智能化

现代数控机床将引进自适应控制技术,根据切削条件的'变化,自动调节工作参数,使加工过程中能保持良好工作状态,从而得到较高的加工精度和较小的表面粗糙度,同时也能提高刀具的使用寿命和设备的生产效率。具有自诊断、自修复功能,在整个工作状态中,系统随时对CNC系统本身以及与其相连的各种设备进行自诊断、检查。一旦出现故障时,立即采用停机等措施,并进行故障报警,提示发生故障的部位、原因等。还可以自动使故障模块脱机,而接通备用模块,以确保无人化工作环境的要求。为实现更高的故障诊断要求,其发展趋势是采用人工智能专家诊断系统。

4.数控编程自动化

目前CAD/CAM图形交互式自动编程已得到较多的应用,是数控技术发展的新趋势。它是利用CAD绘制的零件加工图样,再经计算机内的刀具轨迹数据进行计算和后置处理,从而自动生成NC零件加工程序,以实现CAD与CAM的集成。随着CIMS技术的发展,当前又出现了CAD/CAPP/CAM集成的全自动编程方式,它与CAD/CAM系统编程的最大区别是其编程所需的加工工艺参数不必由人工参与,直接从系统内的CAPP数据库获得。

5.高速度、高精度化

速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品质量。目前,数控系统采用位数、频率更高的处理器,以提高系统的基本运算速度。同时,采用超大规模的集成电路和多微处理器结构,以提高系统的数据处理能力,即提高插补运算的速度和精度。并采用直线电动机直接驱动机床工作台的直线伺服进给方式,其高速度和动态响应特性相当优越。采用前馈控制技术,使追踪滞后误差大大减小,从而改善拐角切削的加工精度。

6.多功能化

配有自动换刀机构(刀库容量可达100把以上)的各类加工中心,能在同一台机床上同时实现铣削、镗削、钻削、车削、铰孔、扩孔、攻螺纹等多种工序加工,现代数控机床还采用了多主轴、多面体切削,即同时对一个零件的不同部位进行不同方式的切削加工。数控系统由于采用了多CPU结构和分级中断控制方式,即可在一台机床上同时进行零件加工和程序编制,实现所谓的“前台加工,后台编辑”。为了适应柔性制造系统和计算机集成系统的要求,数控系统具有远距离串行接口,甚至可以联网,实现数控机床之间的数据通信,也可以直接对多台数控机床进行控制。

为适应超高速加工的要求,数控机床采用主轴电动机与机床主轴合二为一的结构形式,实现了变频电动机与机床主轴一体化,主轴电机的轴承采用磁浮轴承、液体动静压轴承或陶瓷滚动轴承等形式。

数控机床以其卓越的柔性自动化的性能、优异而稳定的精度、灵捷而多样化的功能引起世人瞩目,它开创了机械产品向机电一体化发展的先河,因此数控技术成为先进制造技术中的一项核心技术。另一方面,通过持续的研究,信息技术的深化应用促进了数控机床的进一步提升。

;

(责任编辑:IT教学网)

更多

推荐浏览器文章