python读取数据文件,生成点矩阵(python读取矩阵的元素)
python中怎么将一个数据集中的每条数据转换成相应的矩阵?
python的一个很重要的包是numpy包,这个包可以很方便的做数据科学计算。numpy中有很多方法,array,matrix,对于数据集的每一条数据,可以通过matrix函数来将其转换为矩阵形式,并且还有reshape方法,可以调整矩阵的行和列。
怎样用Python将图片转为矩阵?
1、点击键盘 win+r,打开运行窗口。在运行窗口中输入“cmd",点击enter键,打开windows命令行窗口。
2、在windows命令行窗口中,输入“python”,点击enter键,进入python的命令交互窗口。
3、使用import语句,引入numpy模块,并重命名为np。
4、使用函数np.array()创建矩阵一个矩阵A,其中z矩阵A是2x2的矩阵。
5、使用函数np.linalg.inv(A),求解矩阵A的逆矩阵。
6、使用函数np.array()创建矩阵一个矩阵B,其中矩阵B是3x3的矩阵。
Python如何将txt或者csv文件的数据转成矩阵?
很多时候,我们将数据存在txt或者csv格式的文件里,最后再用python读取出来,存到数组或者列表里,再做相应计算。本文首先介绍写入txt的方法,再根据不同的需求(存为数组还是list),介绍从txt读取浮点数的方法。
一、写入浮点数到txt文件:
假设每次有两个浮点数需要写入txt文件,这里提供用with关键字打开文件的方法,使用with打开文件是一个很好的习惯,因为with结束,它就会自动close file,不用手动再去flie.close()。
[python] view plain copy
with open('file_path/filename.txt','a') as file:
write_str = '%f %f\n'%(float_data1,float_data2)
file.write(write_str)
二、从txt文件提取浮点数到numpy数组或list列表
首先假设你有一个odom.txt 的文件,里面每一行的数据个数都相同,如截图所示:
1.如果你是想把这些数据读取出来,存为numpy数组,那么一句代码可以搞定:
[python] view plain copy
a = numpy.loadtxt('odom.txt')
存为numpy数组以后,a的尺寸可以用a.shape进行查看,这里应为:(14,2)也就是14行2列。如果你觉得这个形状不是你期待的,你可以用:
[python] view plain copy
b = numpy.reshape(a,(你想要的形状))
如
b = numpy.reshape(a,(-1,1,2))
那么b就是一个三维数组了(14,1,2)
2.如果只是想读出来,存到一个list里,那就用下面的常用python格式了:
[python] view plain copy
with open('odom.txt', 'r') as f:
data = f.readlines() #txt中所有字符串读入data
for line in data:
odom = line.split() #将单个数据分隔开存好
numbers_float = map(float, odom) #转化为浮点数
print numbers_float
如何将csv文件中的数据写入python并转换成矩阵以文件形式输出
Python处理csv文件时经常会用到讲csv文件整体读取为一个数组或者矩阵的情况,借助numpy包,可以使用如下代码简洁高效低实现:
[python]?view plain?copy
import?numpy
my_matrix?=?numpy.loadtxt(open("c:\\1.csv","rb"),delimiter=",",skiprows=0)
将数组或者矩阵存储为csv文件可以使用如下代码实现:
[python]?view plain?copy
numpy.savetxt('new.csv',?my_matrix,?delimiter?=?',')