python怎么读取数据header(python怎么读取数据库表每一行数据)

http://www.itjxue.com  2023-04-12 17:59  来源:未知  点击次数: 

Python爬虫之Header

HTTP “请求头信息” Request Header 是向服务端提供客户端的信息,“响应头信息” Response Header 是服务端向客户端提供请求文档信息或服务器的状态信息,服务端判断服务端的身份,就是通过 Header 来判断的,所以爬虫通过设置 Header 来隐藏自己相当重要。

一个完整的HTTP请求包含以下部分:

请求方法 URL HTTP版本

请求头信息

请求数据

一个空行,请求的结束行

常见的请求头:

Accept :客户端接收的数据类型,如:Accept:text/html

User Agent :客户端软件类型

Authorization :认证消息,包括用户名和口令

Referer :用户获取的Web页面

真实的请求头信息会更多,下面是豆瓣某短评的真实请求头:

一个完整的HTTP响应包含以下部分:

状态行

响应头

响应数据

常见的状态行:

更多状态码查看: HTTP状态码

常见的响应头:

Server :Web服务器程序的信息

Date :当前服务器的日期和时间

Last Modified :请求文档最近一次修改的时间

Expires :请求文档过期时间

Content-length :数据长度(字节)

Content-type :数据MIME类型

WWW-authenticate :用于通知客户方需要的认证信息,如用户名,口令等

下面是豆瓣某短评的真实响应头:

Python使用Requests来请求的时候,如果没有设置Header,Header是空的,设置Header的方法如下:

利用python的requests库如何获取post后服务器返回的headers信息?

1、在用python的requests库时利用post模拟上传数据网站会跳转到另外一个网站在做页面分析时发现。

2、可从服务器返回的响应标头中找到该url请问如何获得post后服务器返回的headers信息。

python 读取CSV 文件

读取一个CSV 文件

最全的

一个简化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中

本地文件读取实例:://localhost/path/to/table.csv

**sep **: str, default ‘,’

指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:'\r\t'

**delimiter **: str, default None

定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace : boolean, default False.

指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep='\s+'。如果这个参数设定为Ture那么delimiter 参数失效。

在新版本0.18.1支持

header : int or list of ints, default ‘infer’

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉。

注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。

**names **: array-like, default None

用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。默认列表中不能出现重复,除非设定参数mangle_dupe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。

如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。

usecols : array-like, default None

返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。

as_recarray : boolean, default False

不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。

返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,则返回一个Series

**prefix **: str, default None

在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, ...

**mangle_dupe_cols **: boolean, default True

重复的列,将‘X’...’X’表示为‘X.0’...’X.N’。如果设定为false则会将所有重名列覆盖。

dtype : Type name or dict of column - type, default None

每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}

**engine **: {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None

列转换函数的字典。key可以是列名或者列的序号。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符后的空白(默认为False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0

从文件尾部开始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推荐使用:建议使用skipfooter ,功能一样。

nrows : int, default None

需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None

一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.

**keep_default_na **: bool, default True

如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

**na_filter **: boolean, default True

是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose : boolean, default False

是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines : boolean, default True

如果为True,则跳过空行;否则记为NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。

**keep_date_col **: boolean, default False

如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser : function, default None

用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。

1.使用一个或者多个arrays(由parse_dates指定)作为参数;

2.连接指定多列字符串作为一个列作为参数;

3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

**dayfirst **: boolean, default False

DD/MM格式的日期类型

**iterator **: boolean, default False

返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None

文件块的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

直接使用磁盘上的压缩文件。如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。如果使用zip,那么ZIP包中国必须只包含一个文件。设置为None则不解压。

新版本0.18.1版本支持zip和xz解压

thousands : str, default None

千分位分割符,如“,”或者“."

decimal : str, default ‘.’

字符中的小数点 (例如:欧洲数据使用’,‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None

当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None

标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。例如如果指定comment='#' 解析‘#empty\na,b,c\n1,2,3’ 以header=0 那么返回结果将是以’a,b,c'作为header。

encoding : str, default None

指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分块加载到内存,再低内存消耗中解析。但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用

compact_ints : boolean, default False

不推荐使用,这个参数将会在未来版本移除

如果设置compact_ints=True ,那么任何有整数类型构成的列将被按照最小的整数类型存储,是否有符号将取决于use_unsigned 参数

use_unsigned : boolean, default False

不推荐使用:这个参数将会在未来版本移除

如果整数列被压缩(i.e. compact_ints=True),指定被压缩的列是有符号还是无符号的。

memory_map : boolean, default False

如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。

ref:

python-读取xls文件

import pandas as pd

import warnings

warnings.filterwarnings("ignore")

folder_location='D:/Users/RE/'? -- 文件所在文件夹位置。

inputfile=folder_location+'数据底表.xlsx'? #打开csv文件

data=pd.read_excel(inputfile)

df=data

这说明数据已经 从xls文件里面读取到了 python中。

之后可以根据一些简单的groupby 等语句进行操作。

以下是函数可选参数

pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None,

? ? ? ? ? ? ? ? arse_cols=None,date_parser=None,na_values=None,thousands=None,

? ? ? ? ? ? ? ? convert_float=True,has_index_names=None,converters=None,dtype=None,

? ? ? ? ? ? ? ? true_values=None,false_values=None,engine=None,squeeze=False,**kwds)

常用参数解析:

io ?:excel 路径;? 必填项 路径需要包含文件名

sheetname :默认是sheetname为0,返回多表使用sheetname=[0,1],若sheetname=None是返回全表 。注意:int/string返回的是dataframe,而none和list返回的是dict of dataframe。

header ?:指定作为列名的行,默认0,即取第一行,数据为列名行以下的数据;若数据不含列名,则设定 header = None;

python 获取https网站数据

一,检查pip有没安装cryptography,pyOpenSSL,certifi

pip install cryptography

pip install pyOpenSSL

pip install certifi

二,添加ssl验证

import ssl

ssl._create_default_https_context = ssl._create_stdlib_context

三,添加header

header = {

"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.72 Safari/537.36 Edg/89.0.774.45"

}

四,调用requests的get接口

response = requests.get(url,headers=header)

content = response.text

print(content)

就能获取到html内容,如果需要更好的解释html标签内容可以使用 BeautifulSoup

如何用Python爬取数据?

方法/步骤

在做爬取数据之前,你需要下载安装两个东西,一个是urllib,另外一个是python-docx。

请点击输入图片描述

然后在python的编辑器中输入import选项,提供这两个库的服务

请点击输入图片描述

urllib主要负责抓取网页的数据,单纯的抓取网页数据其实很简单,输入如图所示的命令,后面带链接即可。

请点击输入图片描述

抓取下来了,还不算,必须要进行读取,否则无效。

请点击输入图片描述

5

接下来就是抓码了,不转码是完成不了保存的,将读取的函数read转码。再随便标记一个比如XA。

请点击输入图片描述

6

最后再输入三句,第一句的意思是新建一个空白的word文档。

第二句的意思是在文档中添加正文段落,将变量XA抓取下来的东西导进去。

第三句的意思是保存文档docx,名字在括号里面。

请点击输入图片描述

7

这个爬下来的是源代码,如果还需要筛选的话需要自己去添加各种正则表达式。

(责任编辑:IT教学网)

更多

推荐鼠标代码文章