python爬虫网站完整代码及结果(python爬虫登录网站)
python爬虫怎么做?
大到各类搜索引擎,小到日常数据采集,都离不开网络爬虫。爬虫的基本原理很简单,遍历网络中网页,抓取感兴趣的数据内容。这篇文章会从零开始介绍如何编写一个网络爬虫抓取数据,然后会一步步逐渐完善爬虫的抓取功能。
工具安装
我们需要安装python,python的requests和BeautifulSoup库。我们用Requests库用抓取网页的内容,使用BeautifulSoup库来从网页中提取数据。
安装python
运行pipinstallrequests
运行pipinstallBeautifulSoup
抓取网页
完成必要工具安装后,我们正式开始编写我们的爬虫。我们的第一个任务是要抓取所有豆瓣上的图书信息。我们以/subject/26986954/为例,首先看看开如何抓取网页的内容。
使用python的requests提供的get()方法我们可以非常简单的获取的指定网页的内容,代码如下:
提取内容
抓取到网页的内容后,我们要做的就是提取出我们想要的内容。在我们的第一个例子中,我们只需要提取书名。首先我们导入BeautifulSoup库,使用BeautifulSoup我们可以非常简单的提取网页的特定内容。
连续抓取网页
到目前为止,我们已经可以抓取单个网页的内容了,现在让我们看看如何抓取整个网站的内容。我们知道网页之间是通过超链接互相连接在一起的,通过链接我们可以访问整个网络。所以我们可以从每个页面提取出包含指向其它网页的链接,然后重复的对新链接进行抓取。
通过以上几步我们就可以写出一个最原始的爬虫。在理解了爬虫原理的基础上,我们可以进一步对爬虫进行完善。
写过一个系列关于爬虫的文章:/i6567289381185389064/。感兴趣的可以前往查看。
Python基本环境的搭建,爬虫的基本原理以及爬虫的原型
Python爬虫入门(第1部分)
如何使用BeautifulSoup对网页内容进行提取
Python爬虫入门(第2部分)
爬虫运行时数据的存储数据,以SQLite和MySQL作为示例
Python爬虫入门(第3部分)
使用seleniumwebdriver对动态网页进行抓取
Python爬虫入门(第4部分)
讨论了如何处理网站的反爬虫策略
Python爬虫入门(第5部分)
对Python的Scrapy爬虫框架做了介绍,并简单的演示了如何在Scrapy下进行开发
Python爬虫入门(第6部分)
python 爬虫(学了3天写出的代码)
import requests import parsel import threading,os import queue
class Thread(threading.Thread): def init (self,queue,path): threading.Thread. init (self) self.queue = queue self.path = path
def download_novel(url, path): res = get_response(url) selctor = parsel.Selector(res) title = selctor.css('.bookname h1::text').get() print(title) content = ' '.join(selctor.css('#content::text').getall()) # 使用join方法改变内容; with open( path + title + ".txt","w",encoding='utf-8') as f: f.write(content) print(title,'保存成功!') f.close()
def get_response(url): # 获得网站源码; response = requests.get(url) response.encoding = 'utf-8' return response.text
if name == ' main ': # 函数入口 url = str(input('请输入你要下载小说的url:')) response = get_response(url) sel = parsel.Selector(response) novelname = sel.css('#info h1::text').get() urllist = sel.css('.box_con p dl dd a::attr(href)').getall() queue = queue.Queue() path = './{}/'.format(novelname)
如何用Python爬虫抓取网页内容?
爬虫流程
其实把网络爬虫抽象开来看,它无外乎包含如下几个步骤
模拟请求网页。模拟浏览器,打开目标网站。
获取数据。打开网站之后,就可以自动化的获取我们所需要的网站数据。
保存数据。拿到数据之后,需要持久化到本地文件或者数据库等存储设备中。
那么我们该如何使用 Python 来编写自己的爬虫程序呢,在这里我要重点介绍一个 Python 库:Requests。
Requests 使用
Requests 库是 Python 中发起 HTTP 请求的库,使用非常方便简单。
模拟发送 HTTP 请求
发送 GET 请求
当我们用浏览器打开豆瓣首页时,其实发送的最原始的请求就是 GET 请求
import requests
res = requests.get('')
print(res)
print(type(res))
Response [200]
class 'requests.models.Response'
如何用Python爬取搜索引擎的结果
我选取的是爬取百度知道的html 作为我的搜索源数据,目前先打算做网页标题的搜索,选用了 Python 的 scrapy 库来对网页进行爬取,爬取网页的标题,url,以及html,用sqlist3来对爬取的数据源进行管理。
爬取的过程是一个深度优先的过程,设定四个起始 url ,然后维护一个数据库,数据库中有两个表,一个 infoLib,其中存储了爬取的主要信息:标题,url ,html;另一个表为urlLib,存储已经爬取的url,是一个辅助表,在我们爬取每个网页前,需要先判断该网页是否已爬过(是否存在urlLib中)。在数据存储的过程中,使用了SQL的少量语法,由于我之前学过 MySQL ,这块处理起来比较驾轻就熟。
深度优先的网页爬取方案是:给定初始 url,爬取这个网页中所有 url,继续对网页中的 url 递归爬取。代码逐段解析在下面,方便自己以后回顾。
1.建一个 scrapy 工程:
关于建工程,可以参看这个scrapy入门教程,通过运行:
[python] view plain copy
scrapy startproject ***
在当前目录下建一个scrapy 的项目,然后在 spiders 的子目录下建立一个 .py文件,该文件即是爬虫的主要文件,注意:其中该文件的名字不能与该工程的名字相同,否则,之后调用跑这个爬虫的时候将会出现错误,见ImportError。
2.具体写.py文件:
[python] view plain copy
import scrapy
from scrapy import Request
import sqlite3
class rsSpider(scrapy.spiders.Spider): #该类继承自 scrapy 中的 spider
name = "zhidao" #将该爬虫命名为 “知道”,在执行爬虫时对应指令将为: scrapy crawl zhidao
#download_delay = 1 #只是用于控制爬虫速度的,1s/次,可以用来对付反爬虫
allowed_domains = ["zhidao.baidu.com"] #允许爬取的作用域
url_first = '' #用于之后解析域名用的短字符串
start_urls = ["", #python
"", #database
"", #C++
"", #operator system
"" #Unix programing
] #定义初始的 url ,有五类知道起始网页
#add database
connDataBase = sqlite3.connect("zhidao.db") #连接到数据库“zhidao.db”
cDataBase = connDataBase.cursor() #设置定位指针
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS infoLib
(id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')
#通过定位指针操作数据库,若zhidao.db中 infoLib表不存在,则建立该表,其中主键是自增的 id(用于引擎的docId),下一列是文章的标题,然后是url,最后是html
#url dataBase
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS urlLib
(url text PRIMARY KEY)''')
#通过定位指针操作数据库,若zhidao.db中urlLib表不存在,则建立该表,其中只存了 url,保存已经爬过的url,之所以再建一个表,是猜测表的主键应该使用哈希表存储的,查询速度较快,此处其实也可以用一个外键将两个表关联起来
2. .py文件中的parse函数:
.py文件中的parse函数将具体处理url返回的 response,进行解析,具体代码中说明:
[python] view plain copy
def parse(self,response):
pageName = response.xpath('//title/text()').extract()[0] #解析爬取网页中的名称
pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0] #解析爬取网页的 url,并不是直接使用函数获取,那样会夹杂乱码
pageHtml = response.xpath("//html").extract()[0] #获取网页html
# judge whether pageUrl in cUrl
if pageUrl in self.start_urls:
#若当前url 是 start_url 中以一员。进行该判断的原因是,我们对重复的 start_url 中的网址将仍然进行爬取,而对非 start_url 中的曾经爬过的网页将不再爬取
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
lines = self.cDataBase.fetchall()
if len(lines): #若当前Url已经爬过
pass #则不再在数据库中添加信息,只是由其为跟继续往下爬
else: #否则,将信息爬入数据库
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
else: #此时进入的非 url 网页一定是没有爬取过的(因为深入start_url之后的网页都会先进行判断,在爬取,在下面的for循环中判断)
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
self.connDataBase.commit() #保存数据库的更新
print "-----------------------------------------------" #输出提示信息,没啥用
for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'): #抓出所有该网页的延伸网页,进行判断并对未爬过的网页进行爬取
sel = "" + sel #解析出延伸网页的url
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判断该网页是否已在数据库中
lines = self.cDataBase.fetchall()
if len(lines) == 0: #若不在,则对其继续进行爬取
yield Request(url = sel, callback=self.parse)
在用python编写网页爬虫脚本时出现 UnicodeEncodeError怎么办,求高人指点,代码及运行结果如下图
requests.get返回的网页编码是utf8
在控制台输出的时候需要转换成gbk
print html.text.encode('gbk')
如何用python爬取网站数据?
这里简单介绍一下吧,以抓取网站静态、动态2种数据为例,实验环境win10+python3.6+pycharm5.0,主要内容如下:
抓取网站静态数据(数据在网页源码中):以糗事百科网站数据为例
1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:
对应的网页源码如下,包含我们所需要的数据:
2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:
程序运行截图如下,已经成功爬取到数据:
抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例
1.这里假设我们爬取的是债券数据,主要包括年利率、借款标题、期限、金额和进度这5个字段信息,截图如下:
打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:
2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:
程序运行截图如下,已经成功抓取到数据:
至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。