Zookeeper的原理和作用(zookeeper的主要作用)
ZooKeeper 的功能和原理初探
在公司核心系统的开发过程中用到了ZooKeeper,简称zk,用于搭建分布式核心环境,开发过程中也经常会遇到zk出现的问题,看了几篇博客了解和总结一下zk的基本原理。
ZooKeeper?主要有几个重要的概念,简单总结下:
ZooKeeper?中主要有三种角色:Leader、Follower、Observer
一个 ZooKeeper 集群同一时刻只会有一个 Leader,其他都是 Follower 或 Observer。
ZooKeeper 集群的所有机器通过一个 Leader 选举过程来选定一台被称为『Leader』的机器,Leader服务器为客户端提供读和写服务。
Follower 和 Observer 都能提供读服务,不能提供写服务。两者唯一的区别在于,Observer机器不参与 Leader 选举过程,也不参与写操作的『过半写成功』策略,因此 Observer 可以在不影响写性能的情况下提升集群的读性能。
每个子目录项如 NameService 都被称作为znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。?
Session 是指客户端会话。在ZooKeeper 中,一个客户端连接是指客户端和 ZooKeeper 服务器之间的TCP长连接。
ZooKeeper 对外的服务端口默认是2181,客户端启动时,首先会与服务器建立一个TCP连接,从第一次连接建立开始,客户端会话的生命周期也开始了,通过这个连接,客户端能够通过心跳检测和服务器保持有效的会话,也能够向 ZooKeeper 服务器发送请求并接受响应,同时还能通过该连接接收来自服务器的 Watch 事件通知。
Session 的 SessionTimeout 值用来设置一个客户端会话的超时时间。当由于服务器压力太大、网络故障或是客户端主动断开连接等各种原因导致客户端连接断开时,只要在SessionTimeout 规定的时间内能够重新连接上集群中任意一台服务器,那么之前创建的会话仍然有效。
zookeeper的结构其实就是一个树形结构,leader就相当于其中的根结点,其它节点就相当于follow节点,每个节点都保留自己的内容。
zookeeper的节点分两类: 持久节点 和 临时节点
持久节点:所谓持久节点是指一旦这个 树形结构上被创建了,除非主动进行对树节点的移除操作,否则这个 节点将一直保存在 ZooKeeper 上。
临时节点:临时节点的生命周期跟客户端会话绑定,一旦客户端会话失效,那么这个客户端创建的所有临时节点都会被移除。
有四种类型的znode:?
1、PERSISTENT-持久化目录节点?
客户端与zookeeper断开连接后,该节点依旧存在?
2、PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点?
客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号?
3、EPHEMERAL-临时目录节点?
客户端与zookeeper断开连接后,该节点被删除?
4、EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点?
客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号?
每个 节点除了存储数据内容之外,还存储了 节点本身的一些状态信息。用 get 命令可以同时获得某个 节点的内容和状态信息
在 ZooKeeper 中,version 属性是用来实现乐观锁机制中的『写入校验』的(保证分布式数据原子性操作)。
Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
在ZooKeeper中,能改变ZooKeeper服务器状态的操作称为事务操作。一般包括数据节点创建与删除、数据内容更新和客户端会话创建与失效等操作。对应每一个事务请求,为了保证事务的顺序一致性,ZooKeeper都会为其分配一个全局唯一的事务ID,用 ZXID 表示,通常是一个64位的数字。每一个 ZXID对应一次更新操作,从这些 ZXID 中可以间接地识别出 ZooKeeper 处理这些事务操作请求的全局顺序。
ZooKeeper允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知到感兴趣的客户端上去。该机制是 ZooKeeper 实现分布式协调服务的重要特性。
Zookpeer是什么?在系统中如何起作用?
Zookeeper分布式服务框架是Apache Hadoop的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题。如:统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等。
我们先看看它都提供了哪些功能,然后再看看使用它的这些功能能做点什么。
简单的说,zookeeper=文件系统+通知机制。
Zookeeper维护一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现,不见不散了。
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。
可以把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它下船了。当然又会有新机器加入,也是类似:所有机器收到通知---新兄弟目录加入,highcount又有了,有人上船了。
对于第二点,我们假设机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。厕所有言:来也冲冲,去也冲冲,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
两种类型的队列:
1、 同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
Zookeeper中的角色主要有以下三类:
系统模型如图所示:
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的 Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
选完leader以后,zk就进入状态同步过程。
Leader主要有三个功能:
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
Follower主要有四个功能:
Follower的消息循环处理如下几种来自Leader的消息:
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
P.S. 这篇文章是本人对网络上关于ZK的文章阅读之后整理所得,作为入门级的了解。个人觉得看了上面的内容就能基本了解Zookeeper的作用了,后面在结合实际项目使用加深自己的了解。
end
为什么要使用zookeeper?有什么功能吗?
2006年的时候Google出了Chubby来解决分布一致性的问题(distributed consensus problem),所有集群中的服务器通过Chubby最终选出一个Master Server ,最后这个Master Server来协调工作。简单来说其原理就是:在一个分布式系统中,有一组服务器在运行同样的程序,它们需要确定一个Value,以那个服务器提供的信息为主/为准,当这个服务器经过n/2+1的方式被选出来后,所有的机器上的Process都会被通知到这个服务器就是主服务器 Master服务器,大家以他提供的信息为准。很想知道Google Chubby中的奥妙,可惜人家Google不开源,自家用。
但是在2009年3年以后沉默已久的Yahoo在Apache上推出了类似的产品ZooKeeper,并且在Google原有Chubby的设计思想上做了一些改进,因为ZooKeeper并不是完全遵循Paxos协议,而是基于自身设计并优化的一个2 phase commit的协议,如图所示:
ZooKeeper跟Chubby一样用来存放一些相互协作的信息(Coordination),这些信息比较小一般不会超过1M,在zookeeper中是以一种hierarchical tree的形式来存放,这些具体的Key/Value信息就store在tree node中。
当有事件导致node数据,例如:变更,增加,删除时,Zookeeper就会调用 triggerWatch方法,判断当前的path来是否有对应的监听者(watcher),如果有watcher,会触发其process方法,执行process方法中的业务逻辑
Zookeeper深入原理
Zookeeper 的视图结构是一个树形结构,树上的每个节点称之为数据节点(即 ZNode),每个ZNode 上都可以保存数据,同时还可以挂载子节点。并且Zookeeper的根节点为 "/"。
在 Zookeeper 中,每个数据节点都是有生命周期的,其生命周期的长短取决于数据节点的节点类型。在 Zookeeper 中有如下几类节点:
每个数据节点中除了存储了数据内容之外,还存储了数据节点本身的一些状态信息(State)。
在Zookeeper 中,事务是指能够改变 Zookeeper 服务器状态的操作,我们也称之为事务操作或更新操作,一般包括数据节点创建与删除、数据节点内容更新和客户端会话创建与失效等操作。对于每一个事务请求,Zookeeper 都会为其分配一个全局唯一的事务ID,用 ZXID 来表示,通常是一个 64 位的数字。每一个 ZXID 对应一次更新操作,从这些 ZXID 中可以间接地识别出 Zookeeper 处理这些更新操作请求的全局顺序。
ZXID 是一个 64 位的数字,其中低 32 位可以看作是一个简单的单调递增的计数器,针对客户端的每一个事务请求,Leader 服务器在产生一个新的事务 Proposal 的时候,都会对该计数器进行加 1 操作;而高 32 位则代表了 Leader 周期 epoch 的编号,每当选举产生一个新的 Leader 服务器,就会从这个 Leader 服务器上取出其本地日志中最大事务 Proposal 的 ZXID,并从该 ZXID 中解析出对应的 epoch 值,然后再对其进行加 1 操作,之后就会以此编号作为新的 epoch,并将低 32 位置 0 来开始生成新的 ZXID。
Zookeeper 中为数据节点引入了版本的概念,每个数据节点都具有三种类型的版本信息(在上面的状态信息中已经介绍了三种版本信息代表的意思),对数据节点的任何更新操作都会引起版本号的变化。其中我们以 dataVersion 为例来说明。在一个数据节点被创建完毕之后,节点的dataVersion 值是 0,表示的含义是 ”当前节点自从创建之后,被更新过 0 次“。如果现在对该节点的数据内容进行更新操作,那么随后,dataVersion 的值就会变成 1。即表示的是对数据节点的数据内容的变更次数。
版本的作用是用来实现乐观锁机制中的 “写入校验” 的。例如,当要修改数据节点的数据内容时,带上版本号,如果数据节点的版本号与传入的版本号相等,就进行修改,否则修改失败。
Zookeeper 提供了分布式数据的发布/订阅功能。一个典型的发布/订阅模型系统定义了一种一对多的订阅关系,能够让多个订阅者同时监听某一个主题对象,当这个主题对象自身状态变化时,会通知所有订阅者,使它们能够做出相应的处理。在 Zookeeper 中,引入了 Watcher 机制来实现这种分布式的通知功能。Zookeeper 允许客户端向服务端注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,那么就会向指定客户端发送一个事件通知来实现分布式的通知功能。
从上图可以看出 Zookeeper 的 Watcher 机制主要包括客户端线程、客户端WatchMananger 和 Zookeeper 服务器三部分。在具体工作流程上,简单地讲,客户端在向 Zookeeper 服务器注册 Watcher 的同时,会将 Watcher 对象存储在客户端的 WatchMananger 中。当 Zookeeper 服务器端触发 Watcher 事件后,会向客户端发送通知,客户端线程从 WatchManager 中取出对应的 Watcher 对象来执行回调逻辑。
Watcher是一个接口,任何实现了Watcher接口的类就是一个新的Watcher。Watcher内部包含了两个枚举类:KeeperState、EventType
注 :客户端接收到的相关事件通知中只包含状态及类型等信息,不包括节点变化前后的具体内容,变化前的数据需业务自身存储,变化后的数据需调用get等方法重新获取;
上面讲到zookeeper客户端连接的状态和zookeeper对znode节点监听的事件类型,下面我们来讲解如何建立zookeeper的watcher监听。在zookeeper中采用zk.getChildren(path, watch)、zk.exists(path, watch)、zk.getData(path, watcher, stat)这样的方式为某个znode注册监听。
下表以node-x节点为例,说明调用的注册方法和可监听事件间的关系:
Zookeeper 中提供了一套完善的 ACL(Access Control List)权限控制机制来保障数据的安全。
ACL 由三部分组成,分别是:权限模式(Scheme)、授权对象(ID)和权限(Permission),通常使用“scheme: id:permission”来标识一个有效的ACL 信息。下面分别介绍:
1.7.4、ACL 超级管理员
zookeeper的权限管理模式有一种叫做super,该模式提供一个超管可以方便的访问任何权限的节点
假设这个超管是:super:admin,需要先为超管生成密码的密文
那么打开zookeeper目录下的/bin/zkServer.sh服务器脚本文件,找到如下一行:
这就是脚本中启动zookeeper的命令,默认只有以上两个配置项,我们需要加一个超管的配置项
那么修改以后这条完整命令变成了
之后启动zookeeper,输入如下命令添加权限
在服务器集群初始化阶段,我们以 3 台机器组成的服务器集群为例,当有一台服务器server1 启动的时候,它是无法进行 Leader 选举的,当第二台机器 server2 也启动时,此时这两台服务器已经能够进行互相通信,每台机器都试图找到一个 Leader,于是便进入了 Leader 选举流程。
在zookeeper运行期间,leader与非leader服务器各司其职,即便当有非leader服务器宕机或新加入,此时也不会影响leader,但是一旦leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮leader选举,其过程和启动时期的Leader选举过程基本一致。
假设正在运行的有server1、server2、server3三台服务器,当前leader是server2,若某一时刻leader挂了,此时便开始Leader选举。选举过程如下:
observer角色特点:
为了使用observer角色,在任何想变成observer角色的配置文件中加入如下配置:
并在所有server的配置文件中,配置成observer模式的server的那行配置追加:observer,例如:
kafka中的zookeeper起到什么作用
zookeeper是一个分布式的协调组件,早期版本的kafka用zk做meta信息存储,consumer的消费状态,group的管理以及offset的值。
考虑到zk本身的一些因素以及整个架构较大概率存在单点问题,新版本中逐渐弱化了zookeeper的作用。新的consumer使用了kafka内部的group coordination协议,也减少了对zookeeper的依赖。
zookeeper什么意思
zookeeper是动物管理员的意思。
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
ZooKeeper包含一个简单的原语集,提供Java和C的接口。
ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。
它的原理:
ZooKeeper是以Fast Paxos算法为基础的,Paxos 算法存在活锁的问题,即当有多个proposer交错提交时,有可能互相排斥导致没有一个proposer能提交成功,而Fast Paxos做了一些优化,通过选举产生一个leader (领导者),只有leader才能提交proposer,具体算法可见Fast Paxos。因此,要想弄懂ZooKeeper首先得对Fast Paxos有所了解。
ZooKeeper的基本运转流程:1、选举Leader。2、同步数据。3、选举Leader过程中算法有很多,但要达到的选举标准是一致的。4、Leader要具有最高的执行ID,类似root权限。5、集群中大多数的机器得到响应并接受选出的Leader。