单片机c语言编程300例(单片机c语言编程300例四路抢答器)

http://www.itjxue.com  2023-03-07 10:21  来源:未知  点击次数: 

经典C语言程序例子

题目01:在一个已知的字符串中查找最长单词,假定字符串中只含字母和空格,空格用来分隔不同的单词。

直接编译,程序执行结果如下图所示:

题目02:编写一个int string_len(char *s),返回字符串s的字符长度(不包括\0)。

直接编译,程序执行结果如下图所示:

扩展资料:

C语言是一门通用计算机编程语言,应用广泛。C语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

尽管C语言提供了许多低级处理的功能,但仍然保持着良好跨平台的特性,以一个标准规格写出的C语言程序可在许多电脑平台上进行编译,甚至包含一些嵌入式处理器(单片机或称MCU)以及超级电脑等作业平台。

单片机c语言编程100个实例

51单片机C语言编程实例 基础知识:51单片机编程基础 单片机的外部结构: 1. DIP40双列直插; 2. P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平) 3. 电源VCC(PIN40)和地线GND(PIN20); 4. 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位) 5. 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍) 6. 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序) 7. P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务) 1. 四个8位通用I/O端口,对应引脚P0、P1、P2和P3; 2. 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1) 3. 一个串行通信接口;(SCON,SBUF) 4. 一个中断控制器;(IE,IP) 针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。 C语言编程基础: 1. 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。 2. 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。 3. ++var表示对变量var先增一;var—表示对变量后减一。 4. x |= 0x0f;表示为 x = x | 0x0f; 5. TMOD = ( TMOD 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。 6. While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;} 在某引脚输出高电平的编程方法:(比如P1.3(PIN4)引脚) 代码 1. #include AT89x52.h //该头文档中有单片机内部资源的符号化定义,其中包含P1.3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_3 = 1; //给P1_3赋值1,引脚P1.3就能输出高电平VCC 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 注意:P0的每个引脚要输出高电平时,必须外接上拉电阻(如4K7)至VCC电源。 在某引脚输出低电平的编程方法:(比如P2.7引脚) 代码 1. #include AT89x52.h //该头文档中有单片机内部资源的符号化定义,其中包含P2.7 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P2_7 = 0; //给P2_7赋值0,引脚P2.7就能输出低电平GND 5. While( 1 ); //死循环,相当 LOOP: goto LOOP; 6. } 在某引脚输出方波编程方法:(比如P3.1引脚) 代码 1. #include AT89x52.h //该头文档中有单片机内部资源的符号化定义,其中包含P3.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 5. { 6. P3_1 = 1; //给P3_1赋值1,引脚P3.1就能输出高电平VCC 7. P3_1 = 0; //给P3_1赋值0,引脚P3.1就能输出低电平GND 8. } //由于一直为真,所以不断输出高、低、高、低……,从而形成方波 9. } 将某引脚的输入电平取反后,从另一个引脚输出:( 比如 P0.4 = NOT( P1.1) ) 代码 1. #include AT89x52.h //该头文档中有单片机内部资源的符号化定义,其中包含P0.4和P1.1 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P1_1 = 1; //初始化。P1.1作为输入,必须输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { 7. if( P1_1 == 1 ) //读取P1.1,就是认为P1.1为输入,如果P1.1输入高电平VCC 8. { P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 2 51单片机C语言编程实例 9. else //否则P1.1输入为低电平GND 10. //{ P0_4 = 0; } //给P0_4赋值0,引脚P0.4就能输出低电平GND 11. { P0_4 = 1; } //给P0_4赋值1,引脚P0.4就能输出高电平VCC 12. } //由于一直为真,所以不断根据P1.1的输入情况,改变P0.4的输出电平 13. } 将某端口8个引脚输入电平,低四位取反后,从另一个端口8个引脚输出:( 比如 P2 = NOT( P3 ) ) 代码 1. #include AT89x52.h //该头文档中有单片机内部资源的符号化定义,其中包含P2和P3 2. void main( void ) //void 表示没有输入参数,也没有函数返值,这入单片机运行的复位入口 3. { 4. P3 = 0xff; //初始化。P3作为输入,必须输出高电平,同时给P3口的8个引脚输出高电平 5. While( 1 ) //非零表示真,如果为真则执行下面循环体的语句 6. { //取反的方法是异或1,而不取反的方法则是异或0 7. P2 = P3^0x0f //读取P3,就是认为P3为输入,低四位异或者1,即取反,然后输出 8. } //由于一直为真,所以不断将P3取反输出到P2 9. } 注意:一个字节的8位D7、D6至D0,分别输出到P3.7、P3.6至P3.0,比如P3=0x0f,则P3.7、P3.6、P3.5、P3.4四个引脚都输出低电平,而P3.3、P3.2、P3.1、P3.0四个引脚都输出高电平。同样,输入一个端口P2,即是将P2.7、P2.6至P2.0,读入到一个字节的8位D7、D6至D0。 第一节:单数码管按键显示 单片机最小系统的硬件原理接线图: 1. 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF 2. 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF 3. 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理 4. 接配置:EA(PIN31)。说明原因。 发光二极的控制:单片机I/O输出 将一发光二极管LED的正极(阳极)接P1.1,LED的负极(阴极)接地GND。只要P1.1输出高电平VCC,LED就正向导通(导通时LED上的压降大于1V),有电流流过LED,至发LED发亮。实际上由于P1.1高电平输出电阻为10K,起到输出限流的作用,所以流过LED的电流小于(5V-1V)/10K = 0.4mA。只要P1.1输出低电平GND,实际小于0.3V,LED就不能导通,结果LED不亮。 开关双键的输入:输入先输出高 一个按键KEY_ON接在P1.6与GND之间,另一个按键KEY_OFF接P1.7与GND之间,按KEY_ON后LED亮,按KEY_OFF后LED灭。同时按下LED半亮,LED保持后松开键的状态,即ON亮OFF灭。 代码 1. #include at89x52.h 2. #define LED P1^1 //用符号LED代替P1_1 3. #define KEY_ON P1^6 //用符号KEY_ON代替P1_6 4. #define KEY_OFF P1^7 //用符号KEY_OFF代替P1_7 5. void main( void ) //单片机复位后的执行入口,void表示空,无输入参数,无返回值 6. { 7. KEY_ON = 1; //作为输入,首先输出高,接下KEY_ON,P1.6则接地为0,否则输入为1 8. KEY_OFF = 1; //作为输入,首先输出高,接下KEY_OFF,P1.7则接地为0,否则输入为1 9. While( 1 ) //永远为真,所以永远循环执行如下括号内所有语句 10. { 11. if( KEY_ON==0 ) LED=1; //是KEY_ON接下,所示P1.1输出高,LED亮 12. if( KEY_OFF==0 ) LED=0; //是KEY_OFF接下,所示P1.1输出低,LED灭 13. } //松开键后,都不给LED赋值,所以LED保持最后按键状态。 14. //同时按下时,LED不断亮灭,各占一半时间,交替频率很快,由于人眼惯性,看上去为半亮态 15. } 数码管的接法和驱动原理 一支七段数码管实际由8个发光二极管构成,其中7个组形构成数字8的七段笔画,所以称为七段数码管,而余下的1个发光二极管作为小数点。作为习惯,分别给8个发光二极管标上记号:a,b,c,d,e,f,g,h。对应8的顶上一画,按顺时针方向排,中间一画为g,小数点为h。 我们通常又将各二极与一个字节的8位对应,a(D0),b(D1),c(D2),d(D3),e(D4),f(D5),g(D6),h(D7),相应8个发光二极管正好与单片机一个端口Pn的8个引脚连接,这样单片机就可以通过引脚输出高低电平控制8个发光二极的亮与灭,从而显示各种数字和符号;对应字节,引脚接法为:a(Pn.0),b(Pn.1),c(Pn.2),d(Pn.3),e(Pn.4),f(Pn.5),g(Pn.6),h(Pn.7)。 如果将8个发光二极管的负极(阴极)内接在一起,作为数码管的一个引脚,这种数码管则被称为共阴数码管,共同的引脚则称为共阴极,8个正极则为段极。否则,如果是将正极(阳极)内接在一起引出的,则称为共阳数码管,共同的引脚则称为共阳极,8个负极则为段极。 以单支共阴数码管为例,可将段极接到某端口Pn,共阴极接GND,则可编写出对应十六进制码的七段码表字节数据

《单片机C语言程序设计实训100例——基于8051+Proteus仿真》 第03篇源代码

单片机c语言编程100个实例目录1

函数的使用和熟悉

实例3:用单片机控制第一个灯亮

实例4:用单片机控制一个灯闪烁:认识单片机的工作频率

实例5:将 P1口状态分别送入P0、P2、P3口:认识I/O口的引脚功能

实例6:使用P3口流水点亮8位LED

实例7:通过对P3口地址的操作流水点亮8位LED

实例8:用不同数据类型控制灯闪烁时间

实例9:用P0口、P1 口分别显示加法和减法运算结果

实例10:用P0、P1口显示乘法运算结果

实例11:用P1、P0口显示除法运算结果

实例12:用自增运算控制P0口8位LED流水花样

实例13:用P0口显示逻辑"与"运算结果

实例14:用P0口显示条件运算结果

实例15:用P0口显示按位"异或"运算结果

实例16:用P0显示左移运算结果

实例17:"万能逻辑电路"实验

实例18:用右移运算流水点亮P1口8位LED

实例19:用if语句控制P0口8位LED的流水方向

实例20:用swtich语句的控制P0口8位LED的点亮状态

实例21:用for语句控制蜂鸣器鸣笛次数

实例22:用while语句控制LED

实例23:用do-while语句控制P0口8位LED流水点亮

实例24:用字符型数组控制P0口8位LED流水点亮

实例25: 用P0口显示字符串常量

实例26:用P0 口显示指针运算结果

实例27:用指针数组控制P0口8位LED流水点亮

实例28:用数组的指针控制P0 口8 位LED流水点亮

实例29:用P0 、P1口显示整型函数返回值

实例30:用有参函数控制P0口8位LED流水速度

实例31:用数组作函数参数控制流水花样

实例32:用指针作函数参数控制P0口8位LED流水点亮

实例33:用函数型指针控制P1口灯花样

实例34:用指针数组作为函数的参数显示多个字符串

单片机c语言编程100个实例目录2

实例35:字符函数ctype.h应用举例

实例36:内部函数intrins.h应用举例

实例37:标准函数stdlib.h应用举例

实例38:字符串函数string.h应用举例

实例39:宏定义应用举例2

实例40:宏定义应用举例2

实例41:宏定义应用举例3

* 中断、定时器中断、定时器 *中断、定时器*中断、定时器 /

实例42:用定时器T0查询方式P2口8位控制LED闪烁

实例43:用定时器T1查询方式控制单片机发出1KHz音频

实例44:将计数器T0计数的结果送P1口8位LED显示

实例45:用定时器T0的中断控制1位LED闪烁

实例46:用定时器T0的中断实现长时间定时

实例47:用定时器T1中断控制两个LED以不同周期闪烁

实例48:用计数器T1的中断控制蜂鸣器发出1KHz音频

实例49:用定时器T0的中断实现"渴望"主题曲的播放

实例50-1:输出50个矩形脉冲

实例50-2:计数器T0统计外部脉冲数

实例51-2:定时器T0的模式2测量正脉冲宽度

实例52:用定时器T0控制输出高低宽度不同的矩形波

实例53:用外中断0的中断方式进行数据采集

实例54-1:输出负脉宽为200微秒的方波

实例54-2:测量负脉冲宽度

实例55:方式0控制流水灯循环点亮

实例56-1:数据发送程序

实例56-2:数据接收程序

实例57-1:数据发送程序

实例57-2:数据接收程序

实例58:单片机向PC发送数据

实例59:单片机接收PC发出的数据

*数码管显示*数码管显示 数码管显示数码管显示*/

实例60:用LED数码显示数字5

实例61:用LED数码显示器循环显示数字0~9

实例62:用数码管慢速动态扫描显示数字"1234"

实例63:用LED数码显示器伪静态显示数字1234

实例64:用数码管显示动态检测结果

实例65:数码秒表设计

实例66:数码时钟设计

实例67:用LED数码管显示计数器T0的计数值

实例68:静态显示数字“59”

单片机c语言编程100个实例目录3

键盘控制*键盘控制* *键盘控制 *键盘控制 */

实例69:无软件消抖的独立式键盘输入实验

实例70:软件消抖的独立式键盘输入实验

实例71:CPU控制的独立式键盘扫描实验

实例72:定时器中断控制的独立式键盘扫描实验

实例73:独立式键盘控制的4级变速流水灯

实例74:独立式键盘的按键功能扩展:"以一当四"

实例75:独立式键盘调时的数码时钟实验

实例76:独立式键盘控制步进电机实验

实例77:矩阵式键盘按键值的数码管显示实验

//实例78:矩阵式键盘按键音

实例79:简易电子琴

实例80:矩阵式键盘实现的电子密码锁

液晶显示LCD*液晶显示LCD *液晶显示LCD * *液晶显示LCD*液晶显示LCD *液晶显示LCD */

实例81:用LCD显示字符'A'

实例82:用LCD循环右移显示"Welcome to China"

实例83:用LCD显示适时检测结果

实例84:液晶时钟设计

*一些芯片的使用*24c02 DS18B20 X5045 ADC0832 DAC0832 DS1302 红外遥控/

实例85:将数据"0x0f"写入AT24C02再读出送P1口显示

实例86:将按键次数写入AT24C02,再读出并用1602LCD显示

实例87:对I2C总线上挂接多个AT24C02的读写操作

实例88:基于AT24C02的多机通信 读取程序

实例89:基于AT24C02的多机通信 写入程序

实例90:DS18B20温度检测及其液晶显示

实例91:将数据"0xaa"写入X5045再读出送P1口显示

实例92:将流水灯控制码写入X5045并读出送P1口显示

实例93:对SPI总线上挂接多个X5045的读写操作

实例94:基于ADC0832的数字电压表

实例95:用DAC0832产生锯齿波电压

实例96:用P1口显示红外遥控器的按键值

实例97:用红外遥控器控制继电器

实例98:基于DS1302的日历时钟

实例99:单片机数据发送程序

实例100:电机转速表设计

模拟霍尔脉冲

单片机c语言一百例子

求 单片机简单的C语言程序例子(越多越好)

我前几天刚在网上看到的,不知道对你有没有用》

1. 闪烁灯

1. 实验任务

如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。

2. 电路原理图

图4.1.1

3. 系统板上硬件连线

把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。

4. 程序设计内容

(1). 延时程序的设计方法

作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:

如图4.1.1所示的石英晶体为12MHz,因此,1个机器周期为1微秒

机器周期 微秒

MOV R6,#20 2个机器周期 2

D1: MOV R7,#248 2个机器周期 2 2+2×248=498 20×

DJNZ R7,$ 2个机器周期 2×248 498

DJNZ R6,D1 2个机器周期 2×20=40 10002

因此,上面的延时程序时间为10.002ms。

由以上可知,当R6=10、R7=248时,延时5ms,R6=20、R7=248时,延时10ms,以此为基本的计时单位。如本实验要求0.2秒=200ms,10ms×R5=200ms,则R5=20,延时子程序如下:

DELAY: MOV R5,#20D1: MOV R6,#20D2: MOV R7,#248DJNZ R7,$DJNZ R6,D2DJNZ R5,D1RET

(2). 输出控制

如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。

5. 程序框图

如图4.1.2所示

图4.1.2

6. 汇编源程序ORG 0START: CLR P1.0LCALL DELAYSETB P1.0LCALL DELAYLJMP STARTDELAY: MOV R5,#20 ;延时子程序,延时0.2秒D1: MOV R6,#20D2: MOV R7,#248DJNZ R7,$DJNZ R6,D2DJNZ R5,D1RETEND7. C语言源程序#include AT89X51.Hsbit L1=P1^0;void delay02s(void) //延时0.2秒子程序{unsigned char i,j,k;for(i=20;i0;i--)for(j=20;j0;j--)for(k=248;k0;k--);}void main(void){while(1){L1=0;delay02s();L1=1;delay02s();}}

2. 模拟开关灯

1. 实验任务

如图4.2.1所示,监视开关K1(接在P3.0端口上),用发光二极管L1(接在单片机P1.0端口上)显示开关状态,如果开关合上,L1亮,开关打开,L1熄灭。

2. 电路原理图

图4.2.1

3. 系统板上硬件连线

(1). 把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上;

(2). 把“单片机系统”区域中的P3.0端口用导线连接到“四路拨动开关”区域中的K1端口上;

4. 程序设计内容

(1). 开关状态的检测过程

单片机对开关状态的检测相对于单片机来说,是从单片机的P3.0端口输入信号,而输入的信号只有高电平和低电平两种,当拨开开关K1拨上去,即输入高电平,相当开关断开,当拨动开关K1拨下去,即输入低电平,相当开关闭合。单片机可以采用JB BIT,REL或者是JNB BIT,REL指令来完成对开关状态的检测即可。

(2). 输出控制

如图3所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。

5. 程序框图

图4.2.2

6. 汇编源程序 ORG 00HSTART: JB P3.0,LIGCLR P1.0SJMP STARTLIG: SETB P1.0SJMP STARTEND

7. C语言源程序#include AT89X51.Hsbit K1=P3^0;sbit L1=P1^0;void main(void){while(1){if(K1==0){L1=0; //灯亮}else{L1=1; //灯灭}}}

3. 多路开关状态指示

1. 实验任务

如图4.3.1所示,AT89S51单片机的P1.0-P1.3接四个发光二极管L1-L4,P1.4-P1.7接了四个开关K1-K4,编程将开关的状态反映到发光二极管上。(开关闭合,对应的灯亮,开关断开,对应的灯灭)。

2. 电路原理图

图4.3.1

3. 系统板上硬件连线

(1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示模块”区域中的L1-L4端口上;

(2. 把“单片机系统”区域中的P1.4-P1.7用导线连接到“四路拨动开关”区域中的K1-K4端口上;

4. 程序设计内容

(1. 开关状态检测

对于开关状态检测,相对单片机来说,是输入关系,我们可轮流检测每个开关状态,根据每个开关的状态让相应的发光二极管指示,可以采用JB P1.X,REL或JNB P1.X,REL指令来完成;也可以一次性检测四路开关状态,然后让其指示,可以采用MOV A,P1指令一次把P1端口的状态全部读入,然后取高4位的状态来指示。

(2. 输出控制

根据开关的状态,由发光二极管L1-L4来指示,我们可以用SETB P1.X和CLR P1.X指令来完成,也可以采用MOV P1,#1111XXXXB方法一次指示。

5. 程序框图

读P1口数据到ACC中

ACC内容右移4次

ACC内容与F0H相或

ACC内容送入P1口

![endif]--

图4.3.2

6. 方法一(汇编源程序)ORG 00HSTART: MOV A,P1ANL A,#0F0HRR ARR ARR ARR AORl A,#0F0HMOV P1,ASJMP STARTEND7. 方法一(C语言源程序)#include AT89X51.Hunsigned char temp;void main(void){while(1){temp=P14;temp=temp | 0xf0;P1=temp;}}8. 方法二(汇编源程序)ORG 00HSTART: JB P1.4,NEXT1CLR P1.0SJMP NEX1NEXT1: SETB P1.0NEX1: JB P1.5,NEXT2CLR P1.1SJMP NEX2NEXT2: SETB P1.1NEX2: JB P1.6,NEXT3CLR P1.2SJMP NEX3NEXT3: SETB P1.2NEX3: JB P1.7,NEXT4CLR P1.3SJMP NEX4NEXT4: SETB P1.3NEX4: SJMP STARTEND9. 方法二(C语言源程序)#include AT89X51.Hvoid main(void){while(1){if(P1_4==0){P1_0=0;}else{P1_0=1;}if(P1_5==0){P1_1=0;}else{P1_1=1;}if(P1_6==0){P1_2=0;}else{P1_2=1;}if(P1_7==0){P1_3=0;}else{P1_3=1;}}}

先给你,传不上 太多了

单片机的C语言编程

#include AT89X51.h //包含头文件

unsigned char code dispbit[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //定义数码管位选码

unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,

0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40};//定义数码管段选码

unsigned char dispbuf[8]={0,0,0,0,0,0,10,10}; //显示码数组,因为只用了六个数码管,所以将最后两位赋值为10对应与段码0x00,表示不亮

unsigned char temp[8]; //暂存数组

unsigned char dispcount; //扫描位的记录

unsigned char T0count; //计数次数

unsigned char timecount; //定时器5ms中断的次数

bit flag; //定义标志位

unsigned long x; //定义变量用来存放频率值

void main(void)

{

unsigned char i;

TMOD=0x15; //定义定时器0为计数方式,定时器1为记时方式,均工作在方式1

TH0=0; //定时器0初值高8位为0

TL0=0; //定时器0初值低8位为0

TH1=(65536-5000)/256; //定时器1初值高8位

TL1=(65536-5000)%256; //定时器1初值低8位,即定时5ms

TR1=1;//启动定时器1

TR0=1;//启动定时器0

ET0=1;//开定时器0中断

ET1=1;//开定时器1中断

EA=1; //开总中断

while(1)

{

if(flag==1) //如果定时时间到了1s

{

flag=0; //标志位清零

x=T0count*65536+TH0*256+TL0; //获得整型的频率值,T0count计数器在1s内溢出的次数,每溢出一次就计数了T0count*65536次,再加上当前计数寄存器的值即为实际计数总数

for(i=0;i8;i++)

{

temp[i]=0; //暂存缓冲区清零

}

i=0;

while(x/10) //将频率值的每一位分离出来,存进temp数组,例如63239分离为6、3、2、3、9

{

temp[i]=x%10;

x=x/10;

i++;

}

temp[i]=x;

for(i=0;i6;i++)

{

dispbuf[i]=temp[i]; //将暂存数组的数据赋给显示数组

}

timecount=0; //记时清零

T0count=0; //计数清零

TH0=0; //定时器0初值清零

TL0=0; //定时器0初值清零

TR0=1; //重新启动定时器0,其实是作为计数器来用

}

}

}

void t0(void) interrupt 1 using 0 //每个计数中断一次

{

T0count++; //计数加一

}

void t1(void) interrupt 3 using 0 //5ms产生一次中断

{

TH1=(65536-5000)/256; //

TL1=(65536-5000)%256; //重装初值

timecount++;

if(timecount==200) //当timecount=200时,即为1s

{

TR0=0; //关闭定时器0,为了读出定时器0计数个数

timecount=0; //timecount清零,重新计时

flag=1; //置标志位通知主程序1s已到

}

/**********以下为数码管扫描部分**********/

//因为放在该中断程序中,故每5ms扫描一位数码管

P2=0xff; //先关闭所有数码管

P0=dispcode[dispbuf[dispcount]]; //先确定相应数码管的段码,送入段码

P2=dispbit[dispcount]; //送入位码

dispcount++; //下一次应该扫描下一位数码管所以要加一

if(dispcount==8) //因为共有8个数码管

{

dispcount=0; //扫描完第7个,回头扫描第0个

}

}

(责任编辑:IT教学网)

更多

推荐JSP教程文章