linux定时器,Linux定时器驱动

http://www.itjxue.com  2023-01-22 00:23  来源:未知  点击次数: 

Linux中断与定时器?

所谓中断是指CPU在执行程序的过程中,出现了某些突发事件急待处理,CPU必须暂停当前程序的执行,转去处理突发事件,处理完毕后又返回原程序被中断的位置继续执行。根据中断的来源,中断可分为内部中断和外部中断,内部中断的中断源来自CPU内部(软件中断指令、溢出、除法错误等,例如,操作系统从用户态切换到内核态需借助CPU内部的软件中断),外部中断的中断源来自CPU外部,由外设提出请求。根据中断是否可以屏蔽,中断可分为可屏蔽中断与不可屏蔽中断(NMI),可屏蔽中断可以通过设置中断控制器寄存器等方法被屏蔽,屏蔽后,该中断不再得到响应,而不可屏蔽中断不能被屏蔽。

根据中断入口跳转方法的不同,中断可分为向量中断和非向量中断。采用向量中断的CPU通常为不同的中断分配不同的中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断号对应的地址执行。不同中断号的中断有不同的入口地址。非向量中断的多个中断共享一个入口地址,进入该入口地址后,再通过软件判断中断标志来识别具体是哪个中断。也就是说,向量中断由硬件提供中断服务程序入口地址,非向量中断由软件提供中断服务程序入口地址。

嵌入式系统以及x86PC中大多包含可编程中断控制器(PIC),许多MCU内部就集成了PIC。如在80386中,PIC是两片i8259A芯片的级联。通过读写PIC的寄存器,程序员可以屏蔽/使能某中断及获得中断状态,前者一般通过中断MASK寄存器完成,后者一般通过中断PEND寄存器完成。定时器在硬件上也依赖中断来实现,典型的嵌入式微处理器内可编程间隔定时器(PIT)的工作原理,它接收一个时钟输入,当时钟脉冲到来时,将目前计数值增1并与预先设置的计数值(计数目标)比较,若相等,证明计数周期满,并产生定时器中断且复位目前计数值。

linux定时器周期设置多少

linux定时器周期设置60分钟。根据查询相关资料信息:linux键入crontab-e编辑crontab服务文件即可设置定时器周期。

Linux下的定时器,怎么用

数为秒数,在经过指定秒数后,alarm会发出一个SIGALRM信号

singal函数用来绑定信号处理器函数,这里绑定的是timer,被绑定的函数必须固定为返回值void、参数int.

只需要alarm(时间)就设置了,可能由于getchar需要进入中断导致信号被挂起所以没反应,可以试试把getchar换成别的东西来延时看看。

关于更多Linux的学习,请查阅书籍《linux就该这么学》。

Linux设置定时任务

《使用PSSH批量管理Linux》 一文中,已经学习了使用pssh批量管理linux的技巧。而很多时候,我们需要定时执行一些任务,或者需要定时执行一些批量任务。因此,本文就来研究一下linux设置定时任务的方法。

主要参考 Linux Crontab 定时任务 、 Linux定时任务Crontab命令详解 和 Linux 定时任务详解 。

cron(crond)是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程。linux系统上面原本就有非常多的计划性工作,因此这个系统服务是默认启动的。crond进程每分钟会定期检查是否有要执行的任务,如果有要执行的任务,则自动执行该任务。另外,由于使用者自己也可以设置计划任务,所以,linux系统也提供了使用者控制计划任务的命令:crontab命令。

crontab命令是cron table的简写,它是cron的配置文件,也可以叫它作业列表,我们可以在以下文件夹内找到相关配置文件。

linux下的任务调度分为两类,系统任务调度和用户任务调度。

系统任务调度:系统周期性所要执行的工作,比如写缓存数据到硬盘、日志清理等。 /etc/crontab 文件就是系统任务调度的配置文件。

用户任务调度:用户定期要执行的工作,比如用户数据备份、定时邮件提醒等。用户可以使用 crontab 工具来定制自己的计划任务。所有用户定义的crontab文件都被保存在 /var/spool/cron/crontabs/ 目录中,其文件名与用户名一致。

假设我们使用的是Ubuntu14.04.5 Server版,查看 /etc/crontab ,内容为:

第一行SHELL变量指定了系统要使用哪个shell;第二行PATH变量指定了系统执行 命令的路径。

接下来的命令格式为:

m h dom mon dow user command

英文全拼为:

minute hour day month week user commond

注意, /var/spool/cron 目录中的用户调度任务,没有user一项,因为文件名已经代表了user。

在以上各个字段中,还可以使用以下特殊字符:

crontab命令格式为:

crontab [-u username] [file] [ -e | -l | -r ]

设置定时任务和时间紧密相关,如果服务器的时区时间设置和本地不同,就不能保证计划任务的正确执行。所以使用crontab的第一步,是调节好服务器的时间。

下面参考 Ubuntu 16.04将系统时间写入到硬件时间BIOS ,对服务器时间进行调节。

时间是有时区的,无论硬件时间还是操作系统时间。hwclock的时区在/etc/default/rcS文件中设置,里面有一个参数UTC,默认值为yes,表示使用UTC时区,如果设置为no,那表示使用osclock的时区。建议hwclock与osclock设置相同的时区,也就是no。

1、查看服务器硬件时间

sudo hwclock -r ,看到的时间格式为: Wed 23 May 2018 11:02:17 AM HKT -0.031663 seconds

2、查看服务器系统时间

date ,看到的时间格式为: Wed May 23 11:02:41 HKT 2018

3、设置hwclock和osclock时区相同

sudo vim /etc/default/rcS ,找到:

修改为:

4、将系统时间写入硬件时间

sudo hwclock -w

5、修改系统时区

osclock的时区配置文件为/etc/timezone,不建议直接修改配置文件。

如果你想修改为CST时间,那么执行 sudo tzselect 命令时,选择Asia-China-Beijing Time即可,这时会提示使用Asia/Shanghai时区。(ubuntu和centos通用)

6、设置即刻生效

执行 date ,发现时区没有变化,依然是HKT。

sudo cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

sudo ntpdate time.windows.com

如果执行ntpdate报错:ntpdate[18409]: no server suitable for synchronization found ,那么就换一个时间同步工具。

sudo apt-get install rdate

sudo rdate -s time-b.nist.gov

再次执行 date ,发现时区已经变成了CST。

7、硬件时间同步

sudo hwclock -r ,发现硬件时间落后。

sudo hwclock -w ,再次把系统时间写入硬件时间,同步完成。

实例1:每分钟、每小时、每天、每周、每月、每年执行

实例2:每小时的第3和第15分钟执行

3,15 * * * * myCommand

实例3:在上午8点到11点的第3和第15分钟执行

3,15 8-11 * * * myCommand

实例4:每隔两天的上午8点到11点的第3和第15分钟执行

3,15 8-11 */2 * * myCommand

实例5:每周一上午8点到11点的第3和第15分钟执行

3,15 8-11 * * 1 myCommand

实例6:每晚的21:30重启smb

30 21 * * * /etc/init.d/smb restart

实例7:每月1、10、22日的4 : 45重启smb

45 4 1,10,22 * * /etc/init.d/smb restart

实例8:每周六、周日的1 : 10重启smb

10 1 * * 6,0 /etc/init.d/smb restart

实例9:每天18 : 00至23 : 00之间每隔30分钟重启smb

0,30 18-23 * * * /etc/init.d/smb restart

实例10:每星期六的晚上11 : 00 pm重启smb

0 23 * * 6 /etc/init.d/smb restart

实例11:每一小时重启smb

0 * * * * /etc/init.d/smb restart

实例12:晚上11点到早上7点之间,每隔一小时重启smb

0 23-7/1 * * * /etc/init.d/smb restart

实例13:每月的4号与每周一到周三的11点重启smb

0 11 4 * mon-wed /etc/init.d/smb restart

实例14:一月一号的4点重启smb

0 4 1 jan * /etc/init.d/smb restart

实例15:每小时执行/etc/cron.hourly目录内的脚本

01 * * * * root run-parts /etc/cron.hourly

run-parts这个参数了,如果去掉这个参数的话,后面就可以写要运行的某个脚本名,而不是目录名了。

目标:每分钟查看一下ganglia的状态,并保存到/tmp/log/ganglia目录。

1、创建/tmp/log/ganglia目录

sudo mkdir -p /tmp/log/ganglia

sudo chmod a+w /tmp/log/ganglia

2、编辑crontab

crontab -e ,选择编辑器为vim

3、在crontab文件中添加一行

4、查看crontab任务

crontab -l ,看到任务已经添加成功。

5、等待了五分钟,发现/tmp/log/ganglia目录下啥也没有。

sudo service cron status ,状态正常。

sudo /etc/init.d/cron restart ,重启cron试试。

又等待了五分钟,发现/tmp/log/ganglia目录下依然空空。

莫非是因为pssh没有使用绝对路径? whereis pssh ,找到pssh路径为 /usr/lib/pssh ,修改crontab为:

然而,并没有用。

还是查看下crontab日志吧!

以下主要参考 Ubuntu下用crontab 部署定时任务 。

1、编辑50-default.conf

sudo vim /etc/rsyslog.d/50-default.conf

2、把cron前的井号去掉,也就是修改为:

3、重启rsyslog服务

sudo service rsyslog restart

4、重启crontab服务

sudo service cron restart

5、查看crontab日志

less /var/log/cron.log

果然发现了问题:

也就是说,命令确实按时执行了,只不过没有执行完,被百分号截断了,导致log文件没有正常生成!

修改crontab为:

终于,log文件成功生成,nice!但是,文件内容是空的!因为, /usr/lib/pssh 是一个目录,不是pssh命令!真正的pssh命令是parallel-ssh,找到它的位置为 /usr/bin/parallel-ssh ,修改crontab:

至此,问题圆满解决。

实际使用的时候,一天获取一次ganglia的状态就够了,所以crontab改成:

以上,每天执行一次定时任务,抓取ganglia的运行状态保存到日志文件中。紧接着,我们的目标是使用脚本检查当天的日志文件,如果发现ganglia运行异常,则产生一个错误日志。

1、假设日志文件ganglia-20180524.log的内容为:

2、参考 grep命令最经常使用的功能总结 ,编写脚本checkganglia.sh

3、执行

chmod a+x checkganglia.sh

./checkganglia.sh

如果所有客户机的ganglia运行正常,就会输出All services are runing!。如果有的客户机ganglia进程不存在,则会在/tmp/log/ganglia/目录下生成当天的错误日志。

4、设置定时运行

因为日志的检查工作要在日志生成之后,所以时间上延后十分钟。

上面的脚本,还有很多要改进的地方。比如有的客户机宕机了,上面的脚本检查不出来。比如有的客户机ganglia服务没有启动,那么具体是哪几台?针对这两个问题,下面进行改进。假设已经知道客户机的数量为10。

参考 csplit命令 ,checkganglia.sh脚本修改为:

以上脚本,实现了当客户机数量不为10的时候,进行报错;当客户机ganglia服务没有启动时,进行报错,并且筛选出所有没有启动ganglia的客户机。

本文中,我们先学习了crontab的基础知识和基本用法。然后通过监控ganglia这一个应用场景来具体学习crontab的详细使用方法,包括查看cron日志的方法,crontab中命令转义的方法,定时执行脚本的方法,以及审阅日志脚本的编写和进阶。

至此,还不够完美,因为我们需要每天登录管理机查看有没有错误日志。下一篇 Linux设置邮件提醒 中,我们将会研究linux设置邮件提醒的方法。审阅完日志后,如果脚本能够给我们发送一封邮件,告知我们审阅的结果,那么我们就不必再每天查看错误日志。

linux下的几种时钟和定时器机制

1. RTC(Real Time Clock)

所有PC都有RTC. 它和CPU和其他芯片独立。它在电脑关机之后还可以正常运行。RTC可以在IRQ8上产生周期性中断. 频率在2Hz--8192HZ.

Linux只是把RTC用来获取时间和日期. 当然它允许进程通过对/dev/rtc设备来对它进行编程。Kernel通过0x70和0x71 I/O端口来访问RTC。

?

2. TSC(Time Stamp Counter)

80x86上的微处理器都有CLK输入针脚. 从奔腾系列开始. 微处理器支持一个计数器. 每当一个时钟信号来的时候. 计数器加1. 可以通过汇编指令rdtsc来得到计数器的值。通过calibrate_tsc可以获得CPU的频率. 它是通过计算大约5毫秒里tsc寄存器里面的增加值来确认的。或者可以通过cat /proc/cpuinfo来获取cpu频率。tsc可以提供比PIT更精确的时间度量。

?

3. PIT(Programmable internval timer)

除了RTC和TSC. IBM兼容机提供了PIT。PIT类似微波炉的闹钟机制. 当时间到的时候. 提供铃声. PIT不是产生铃声. 而是产生一种特殊中断. 叫定时器中断或者时钟中断。它用来告诉内核一个间隔过去了。这个时间间隔也叫做一个滴答数。可以通过编译内核是选择内核频率来确定。如内核频率设为1000HZ,则时间间隔或滴答为1/1000=1微秒。滴答月短. 定时精度更高. 但是用户模式的时间更短. 也就是说用户模式下程序执行会越慢。滴答的长度以纳秒形式存在tick_nsec变量里面。PIT通过8254的0x40--0x43端口来访问。它产生中断号为IRQ 0.

下面是关于pIT里面的一些宏定义:

HZ:每秒中断数。

CLOCK_TICK_RATE:值是1,193,182. 它是8254芯片内部振荡器频率。

LATCH:代表CLOCK_TICK_RATE和HZ的比率. 被用来编程PIT。

setup_pit_timer()如下:

spin_lock_irqsave(i8253_lock, flags);

outb_p(0x34,0x43);

udelay(10);

outb_p(LATCH 0xff, 0x40);

udelay(10);

outb (LATCH 8, 0x40);

spin_unlock_irqrestore(i8253_lock, flags);

?

?

4. CPU Local Timer

最近的80x86架构的微处理器上的local apic提供了cpu local timer.他和pit区别在于它提供了one-shot和periodic中断。它可以使中断发送到特定cpu。one-shot中断常用在实时系统里面。

(责任编辑:IT教学网)

更多

推荐新书快递文章