行列式展开一般项公式(行列式直接展开公式)

http://www.itjxue.com  2023-01-26 14:42  来源:未知  点击次数: 

行列式展开公式

行列式展开公式:D=a11A11+a12A12+a13A13=aA11+bA12+cA13Aij。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

行列式展开的公式是什么?

行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值.

例如:D=a11·A11+a12·A12+a13·A13+a14·A14

Aij是aij对应的代数余子式

Aij=(-1)^(i+j)·Mij

Mij是aij对应的余子式。

(-1)^1+1=1

代数余子式前有(-1)的幂指数。

a11(-1)^(1十1)=1

所以A11=(-1)^(1+1)·M11=M11

A14=(-1)^(1+4)·M14?????

行列式展开公式是什么?

行列式的展开公式是在线性代数的范围内,行列式的值代表由它的列向量张成的“立体”的“体积”。行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。

如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。

比如:行列式

D=|a11 a12 a13 a14|

|a21 a22 a23 a24|

|a31 a32 a33 a34|

|a41 a42 a43 a44|

a23处在二行三列,从原行列式中划去它所在的行和列各元素,剩下的元素按原位排列构成的新行列式,称为它的余子式。(是一个比原来行列式低一阶的行列式)

性质:

1、行列互换,行列式不变。

2、把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

3、如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

4、如果行列式中有两行(列)相同,那么行列式为零。

5、如果行列式中两行(列)成比例,那么行列式为零。

6、把一行(列)的倍数加到另一行(列),行列式不变。

7、对换行列式中两行(列)的位置,行列式反号。

(责任编辑:IT教学网)

更多

推荐新书快递文章