python爬虫项目背景(python爬虫环境搭建)

http://www.itjxue.com  2023-04-07 02:41  来源:未知  点击次数: 

python爬虫怎样赚外快

1)在校大学生。最好是数学或计算机相关专业,编程能力还可以的话,稍微看一下爬虫知识,主要涉及一门语言的爬虫库、html解析、内容存储等,复杂的还需要了解URL排重、模拟登录、验证码识别、多线程、代理、移动端抓取等。由于在校学生的工程经验比较少,建议只接一些少量数据抓取的项目,而不要去接一些监控类的项目、或大规模抓取的项目。慢慢来,步子不要迈太大。

(2)在职人员。如果你本身就是爬虫工程师,接私活很简单。如果你不是,也不要紧。只要是做IT的,稍微学习一下爬虫应该不难。在职人员的优势是熟悉项目开发流程,工程经验丰富,能对一个任务的难度、时间、花费进行合理评估。可以尝试去接一些大规模抓取任务、监控任务、移动端模拟登录并抓取任务等,收益想对可观一些。

渠道:淘宝、熟人介绍、猪八戒、csdn、发源地、QQ群等!

扩展资料:

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。

随着网络的迅速发展,万维网成为大量信息的载体,如何有效地提取并利用这些信息成为一个巨大的挑战。搜索引擎(Search Engine),例如传统的通用搜索引擎AltaVista,Yahoo!和Google等,作为一个辅助人们检索信息的工具成为用户访问万维网的入口和指南。但是,这些通用性搜索引擎也存在着一定的局限性,如:

(1)不同领域、不同背景的用户往往具有不同的检索目的和需求,通用搜索引擎所返回的结果包含大量用户不关心的网页。

(2)通用搜索引擎的目标是尽可能大的网络覆盖率,有限的搜索引擎服务器资源与无限的网络数据资源之间的矛盾将进一步加深。

(3)万维网数据形式的丰富和网络技术的不断发展,图片、数据库、音频、视频多媒体等不同数据大量出现,通用搜索引擎往往对这些信息含量密集且具有一定结构的数据无能为力,不能很好地发现和获取。

(4)通用搜索引擎大多提供基于关键字的检索,难以支持根据语义信息提出的查询。

为了解决上述问题,定向抓取相关网页资源的聚焦爬虫应运而生。聚焦爬虫是一个自动下载网页的程序,它根据既定的抓取目标,有选择的访问万维网上的网页与相关的链接,获取所需要的信息。与通用爬虫(general purpose web crawler)不同,聚焦爬虫并不追求大的覆盖,而将目标定为抓取与某一特定主题内容相关的网页,为面向主题的用户查询准备数据资源。

1 聚焦爬虫工作原理以及关键技术概述

网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。

相对于通用网络爬虫,聚焦爬虫还需要解决三个主要问题:

(1) 对抓取目标的描述或定义;

(2) 对网页或数据的分析与过滤;

(3) 对URL的搜索策略。

python爬取电商数据的背景意义

获取数据。python爬取电商数据的背景意义是获取数据,并且获取和研究网络客户的需求及操作习惯数据对商业发展有重要指导意义。Python由荷兰数学和计算机科学研究学会的GuidovanRossum在1990年代初设计,作为一门叫做ABC语言的替代品。

Python之爬虫框架概述

丨综述

爬虫入门之后,我们有两条路可以走。

一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展。另一条路便是学习一些优秀的框架,先把这些框架用熟,可以确保能够应付一些基本的爬虫任务,也就是所谓的解决温饱问题,然后再深入学习它的源码等知识,进一步强化。

就个人而言,前一种方法其实就是自己动手造轮子,前人其实已经有了一些比较好的框架,可以直接拿来用,但是为了自己能够研究得更加深入和对爬虫有更全面的了解,自己动手去多做。后一种方法就是直接拿来前人已经写好的比较优秀的框架,拿来用好,首先确保可以完成你想要完成的任务,然后自己再深入研究学习。第一种而言,自己探索的多,对爬虫的知识掌握会比较透彻。第二种,拿别人的来用,自己方便了,可是可能就会没有了深入研究框架的心情,还有可能思路被束缚。

不过个人而言,我自己偏向后者。造轮子是不错,但是就算你造轮子,你这不也是在基础类库上造轮子么?能拿来用的就拿来用,学了框架的作用是确保自己可以满足一些爬虫需求,这是最基本的温饱问题。倘若你一直在造轮子,到最后都没造出什么来,别人找你写个爬虫研究了这么长时间了都写不出来,岂不是有点得不偿失?所以,进阶爬虫我还是建议学习一下框架,作为自己的几把武器。至少,我们可以做到了,就像你拿了把枪上战场了,至少,你是可以打击敌人的,比你一直在磨刀好的多吧?

丨框架概述

博主接触了几个爬虫框架,其中比较好用的是 Scrapy 和PySpider。就个人而言,pyspider上手更简单,操作更加简便,因为它增加了 WEB 界面,写爬虫迅速,集成了phantomjs,可以用来抓取js渲染的页面。Scrapy自定义程度高,比 PySpider更底层一些,适合学习研究,需要学习的相关知识多,不过自己拿来研究分布式和多线程等等是非常合适的。

在这里博主会一一把自己的学习经验写出来与大家分享,希望大家可以喜欢,也希望可以给大家一些帮助。

丨PySpider

PySpider是binux做的一个爬虫架构的开源化实现。主要的功能需求是:

· 抓取、更新调度多站点的特定的页面

· 需要对页面进行结构化信息提取

· 灵活可扩展,稳定可监控

而这也是绝大多数python爬虫的需求 —— 定向抓取,结构化化解析。但是面对结构迥异的各种网站,单一的抓取模式并不一定能满足,灵活的抓取控制是必须的。为了达到这个目的,单纯的配置文件往往不够灵活,于是,通过脚本去控制抓取是最后的选择。

而去重调度,队列,抓取,异常处理,监控等功能作为框架,提供给抓取脚本,并保证灵活性。最后加上web的编辑调试环境,以及web任务监控,即成为了这套框架。

pyspider的设计基础是:以python脚本驱动的抓取环模型爬虫

· 通过python脚本进行结构化信息的提取,follow链接调度抓取控制,实现最大的灵活性

· 通过web化的脚本编写、调试环境。web展现调度状态

· 抓取环模型成熟稳定,模块间相互独立,通过消息队列连接,从单进程到多机分布式灵活拓展

pyspider-arch

pyspider的架构主要分为 scheduler(调度器), fetcher(抓取器), processor(脚本执行):

· 各个组件间使用消息队列连接,除了scheduler是单点的,fetcher 和 processor 都是可以多实例分布式部署的。 scheduler 负责整体的调度控制。

· 任务由 scheduler 发起调度,fetcher 抓取网页内容, processor 执行预先编写的python脚本,输出结果或产生新的提链任务(发往 scheduler),形成闭环。

· 每个脚本可以灵活使用各种python库对页面进行解析,使用框架API控制下一步抓取动作,通过设置回调控制解析动作。

丨Scrapy

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试

Scrapy 使用了 Twisted 异步网络库来处理网络通讯。整体架构大致如下

Scrapy主要包括了以下组件:

· 引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)

· 调度器(Scheduler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

· 下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)

· 爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面

· 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。

· 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。

· 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。

· 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

· 首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取

· 引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)

· 然后,爬虫解析Response

· 若是解析出实体(Item),则交给实体管道进行进一步的处理。

· 若是解析出的是链接(URL),则把URL交给Scheduler等待抓取。 文 | 崔庆才 来源 | 静觅

简述第一文《为什么选择爬虫,选择python》

1 为什么选择爬虫?要想论述这个问题,需要从网络爬虫是什么?学习爬虫的原因是什么?怎样学习爬虫来理清自己学习的目的,这样才能更好地去研究爬虫技术并坚持下来。

1.1 什么是爬虫:爬虫通常指的是网络爬虫,就是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。一般是根据定义的行为自动进行抓取,更智能的爬虫会自动分析目标网站结构。它还有一些不常使用的名字。如:网络蜘蛛(Web spider)、蚂蚁(ant)、自动检索工具(automatic indexer)、网络疾走(WEB scutter)、网络机器人等。

1.2 学习爬虫的原因:

1.2.1学习爬虫是一件很有趣的事。我曾利用爬虫抓过许多感兴趣东西,兴趣是最好的老师,感兴趣的东西学的快、记的牢,学后有成就感。

@学习爬虫,可以私人订制一个搜索引擎,并且可以对搜索引擎的数据采集工作原理进行更深层次地理解。有的朋友希望能够深层次地了解搜索引擎的爬虫工作原理,或者希望自己能够开发出一款私人搜索引擎,那么此时,学习爬虫是非常有必要的。简单来说,我们学会了爬虫编写之后,就可以利用爬虫自动地采集互联网中的信息,采集回来后进行相应的存储或处理,在需要检索某些信息的时候,只需在采集回来的信息中进行检索,即实现了私人的搜索引擎。当然,信息怎么爬取、怎么存储、怎么进行分词、怎么进行相关性计算等,都是需要我们进行设计的,爬虫技术主要解决信息爬取的问题。

@学习爬虫可以获取更多的数据源。这些数据源可以按我们的目的进行采集,去掉很多无关数据。在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大。此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息。

@对于很多SEO从业者来说,学习爬虫,可以更深层次地理解搜索引擎爬虫的工作原理,从而可以更好地进行搜索引擎优化。既然是搜索引擎优化,那么就必须要对搜索引擎的工作原理非常清楚,同时也需要掌握搜索引擎爬虫的工作原理,这样在进行搜索引擎优化时,才能知己知彼,百战不殆。

@学习爬虫更有钱景。爬虫工程师是当前紧缺人才,并且薪资待遇普遍较高,所以,深层次地掌握这门技术,对于就业来说,是非常有利的。有些朋友学习爬虫可能为了就业或者跳槽。从这个角度来说,爬虫工程师方向也是不错的选择之一,因为目前爬虫工程师的需求越来越大,而能够胜任这方面岗位的人员较少,所以属于一个比较紧缺的职业方向,并且随着大数据时代的来临,爬虫技术的应用将越来越广泛,在未来会拥有很好的发展空间。

除了以上为大家总结的4种常见的学习爬虫的原因外,可能你还有一些其他学习爬虫的原因,总之,不管是什么原因,理清自己学习的目的,就可以更好地去研究一门知识技术,并坚持下来。

1.3 怎样学习爬虫:

1.3.1 选择一门编程语言。入门爬虫的前提肯定是需要学习一门编程语言,推荐使用Python 。2018年5月Python已排名第一,列为最受欢迎的语言。很多人将 Python 和爬虫绑在一起,相比 Java , Php , Node 等静态编程语言来说,Python 内部的爬虫库更加丰富,提供了更多访问网页的 API。写一个爬虫不需要几十行,只需要 十几行就能搞定。尤其是现在反爬虫日渐严峻的情况下,如何伪装自己的爬虫尤为重要,例如 UA , Cookie , Ip 等等,Python 库对其的封装非常和谐,为此可以减少大部分代码量。

1.3.2 学习爬虫需要掌握的知识点。http相关知识,浏览器拦截、抓包;python的scrapy 、requests、BeautifulSoap等第三方库的安装、使用,编码知识、bytes 和str类型转换,抓取javascript 动态生成的内容,模拟post、get,header等,cookie处理、登录,代理访问,多线程访问、asyncio 异步,正则表达式、xpath,分布式爬虫开发等。

1.3.3 学习爬虫的基本方法。 ?理清楚爬虫所需的知识体系,然后各个击破;推荐先买一本有一定知名度的书便于系统的学习爬虫的知识体系。刚开始学的时候,建议从基础库开始,有一定理解之后,才用框架爬取,因为框架也是用基础搭建的,只不过集成了很多成熟的模块,提高了抓取的效率,完善了功能。多实战练习和总结实战练习,多总结对方网站的搭建技术、网站的反爬机制,该类型网站的解析方法,破解对方网站的反爬技巧等。

2 为什么选择Python?

百度知道在这方面介绍的很多了,相比其它编程语言,我就简答一下理由:

2.1 python是脚本语言。因为脚本语言与编译语言的开发测试过程不同,可以极大的提高编程效率。作为程序员至少应该掌握一本通用脚本语言,而python是当前最流行的通用脚本语言。与python相似的有ruby、tcl、perl等少数几种,而python被称为脚本语言之王。

2.2 python拥有广泛的社区。可以说,只要你想到的问题,只要你需要使用的第三方库,基本上都是python的接口。

2.3 python开发效率高。同样的任务,大约是java的10倍,c++的10-20倍。

2.4 python在科研上有大量的应用。大数据计算、模拟计算、科学计算都有很多的包。python几乎在每个linux操作系统上都安装有,大部分unix系统也都缺省安装,使用方便。

2.5 python有丰富和强大的独立库。它几乎不依赖第三方软件就可以完成大部分的系统运维和常见的任务开发;python帮助里还有许多例子代码,几乎拿过来略改一下就可以正式使用。

Python爬虫是什么?

爬虫一般指网络资源的抓取,通过编程语言撰写爬虫工具,抓取自己想要的数据以及内容。而在众多编程语言之中,Python有丰富的网络抓取模块,因此成为撰写爬虫的首选语言,并引起了学习热潮。

Python作为一门编程语言而纯粹的自由软件,以简洁清晰的语法和强制使用空白符号进行语句缩进的特点受到程序员的喜爱。用不同编程语言完成一个任务,C语言一共要写1000行代码,Java要写100行代码,而Python只需要20行,用Python来完成编程任务代码量更少,代码简洁简短而且可读性强。

Python非常适合开发网络爬虫,因为对比其他静态编程语言,Python抓取网页文档的接口更简洁;对比其他脚本语言,Python的urllib2包提供了较为完整的访问网页文档的API。

Python爬虫的工作流程是什么?

Python爬虫通过URL管理器,判断是否有待爬URL,如果有待爬URL,通过调度器进行传递给下载器,下载URL内容,通过调度器传送给解释器,解析URL内容,将有价值数据和新的URL列表通过调度器传递给应用程序,输出价值信息的过程。

Python是一门非常适合开发网络爬虫的语言,提供了urllib、re、json、pyquery等模块,同时还有很多成型框架,比如说Scrapy框架、PySpider爬虫系统等,代码十分简洁方便,是新手学习网络爬虫的首选语言。

(责任编辑:IT教学网)

更多

推荐excel文章