云计算与大数据概论,云计算与大数据概论基础

http://www.itjxue.com  2023-01-22 02:59  来源:未知  点击次数: 

什么叫大数据,与云计算有何关系

如今,两种主流技术已成为IT领域关注的焦点-大数据和云计算。根本不同的是,大数据只涉及处理海量数据,而云计算则涉及基础架构。但是,大数据和云技术提供的简化功能是其被大量企业采用的主要原因。例如,亚马逊的“ Elastic Map Reduce”演示了如何利用Cloud Elastic Computes的功能进行大数据处理。

两者的结合为组织带来了有益的结果。更不用说,这两种技术都处于发展阶段,但是它们的结合在大数据分析中利用了可扩展且具有成本效益的解决方案。

那么,我们可以说大数据与云计算完美结合吗?好吧,有数据点支持它。除此之外,还需要处理一些实时挑战。

大数据与云计算的关系

大数据和云计算这两种技术本身都是有价值的。 此外,许多企业的目标是将两种技术结合起来以获取更多的商业利益。两种技术都旨在提高公司的收入,同时降低投资成本。尽管Cloud管理本地软件,但大数据有助于业务决策。

让我们从这两种技术的基本概述开始!

大数据与云计算

大数据处理大量的结构化,半结构化或非结构化数据,以进行存储和处理以进行数据分析。大数据有五个方面,通过5V来描述

数量–数据量

种类–不同类型的数据

速度–系统中的数据流率

价值 –基于其中包含的信息的数据价值

准确性 –数据保密性和可用性

云计算以按需付费的模式向用户提供服务。云提供商提供三种主要服务,这些服务概述如下:

基础架构即服务(IAAS)

在这里,服务提供商将提供整个基础架构以及与维护相关的任务。

平台即服务(PAAS)

在此服务中,Cloud提供程序提供了诸如对象存储,运行时,排队,数据库等资源。但是,与配置和实现相关的任务的责任取决于使用者。

软件即服务(SAAS)

此服务是最便捷的服务,它提供所有必要的设置和基础结构,并为平台和基础结构提供IaaS。

? ? ? ? ? ?大数据与云计算的关系模型云计算在大数据中的作用

请点击输入图片描述

大数据和云计算的关系可以根据服务类型进行分类:

IAAS在公共云中

IaaS是一种经济高效的解决方案,利用此云服务,大数据服务使人们能够访问无限的存储和计算能力。对于云提供商承担所有管理基础硬件费用的企业而言,这是一种非常经济高效的解决方案。

私有云中的PAAS

PaaS供应商将大数据技术纳入其提供的服务。因此,它们消除了处理管理单个软件和硬件元素的复杂性的需求,而这在处理TB级数据时是一个真正的问题。

混合云中的SAAS

如今,分析社交媒体数据已成为公司进行业务分析的基本参数。在这种情况下,SaaS供应商提供了进行分析的出色平台。

大数据与云计算有何关系?

因此,从以上描述中,我们可以看到,Cloud通过可伸缩且灵活的自助服务应用程序抽象了挑战和复杂性,从而启用了“即服务”模式。从最终用户提取海量数据的分布式处理时,大数据需求是相同的。

云中的大数据分析有多个好处。

改进分析

随着云技术的进步,大数据分析变得更加完善,从而带来了更好的结果。因此,公司倾向于在云中执行大数据分析。此外,云有助于整合来自众多来源的数据。

简化的基础架构

大数据分析是基础架构上一项艰巨的艰巨工作,因为数据量大,速度和传统基础架构通常无法跟上的类型。由于云计算提供了灵活的基础架构,我们可以根据当时的需求进行扩展,因此管理工作负载很容易。

降低成本

大数据和云技术都通过减少所有权来为组织创造价值。云的按用户付费模型将CAPEX转换为OPEX。另一方面,Apache降低了大数据的许可成本,该成本应该花费数百万美元来构建和购买。云使客户无需大规模的大数据资源即可进行大数据处理。因此,大数据和云技术都在降低企业成本并为企业带来价值。

安全与隐私

数据安全性和隐私性是处理企业数据时的两个主要问题。此外,当您的应用程序由于其开放的环境和有限的用户控制安全性而托管在Cloud平台上时,这成为主要的问题。另一方面,像Hadoop这样的大数据解决方案是一个开源应用程序,它使用了大量的第三方服务和基础架构。因此,如今,系统集成商引入了具有弹性和可扩展性的私有云解决方案。此外,它还利用了可扩展的分布式处理。

除此之外,云数据是在通常称为云存储服务器的中央位置存储和处理的。服务提供商和客户将与之一起签署服务水平协议(SLA),以获得他们之间的信任。如果需要,提供商还可以利用所需的高级安全控制级别。这可确保涵盖以下问题的云计算中大数据的安全性:

保护大数据免受高级威胁。

云服务提供商如何维护存储和数据。

有一些与服务级别协议相关的规则可以保护

数据

容量

可扩展性

安全

隐私

数据存储的可用性和数据增长

另一方面,在许多组织中,大数据分析被用来检测和预防高级威胁和恶意黑客。

虚拟化

基础架构在支持任何应用程序中都起着至关重要的作用。虚拟化技术是大数据的理想平台。像Hadoop这样的虚拟化大数据应用程序具有多种优势,这些优势在物理基础架构上是无法访问的,但它简化了大数据管理。大数据和云计算指出了各种技术和趋势的融合,这使IT基础架构和相关应用程序更加动态,更具消耗性和模块化。因此,大数据和云计算项目严重依赖虚拟化

云计算大数据物联网之间的区别与联系

1.物联网是互联网大脑的感觉神经系统

因为物联网重点突出了传感器感知的概念,同时它也具备网络线路传输,信息存储和处理,行业应用接口等功能。而且也往往与互联网共用服务器,网络线路和应用接口,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、信息空间和物理世界(人?机?物)融为一体

2.云计算是互联网大脑的中枢神经系统

在互联网虚拟大脑的架构中,,互联网虚拟大脑的中枢神经系统是将互联网的核心硬件层,核心软件层和互联网信息层统一起来为互联网各虚拟神经系统提供支持和服务,从定义上看,云计算与互联网虚拟大脑中枢神经系统的特征非常吻合。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。

3.大数据是互联网智慧和意识产生的基础

随着博客、社交网络、以及云计算、物联网等技术的兴起,互联网上数据信息正以前所未有的速度增长和累积。互联网用户的互动,企业和政府的信息发布,物联网传感器感应的实时信息每时每刻都在产生大量的结构化和非结构化数据,这些数据分散在整个互联网网络体系内,体量极其巨大。这些数据中蕴含了对经济,科技,教育等等领域非常宝贵的信息[52]。这就是互联网大数据兴起的根源和背景。

与此同时,深度学习为代表的机器学习算法在互联网领域的广泛使用,使得互联网大数据开始与人工智能进行更为深入的结合,这其中就包括在大数据和人工智能领域领先的世界级公司,如百度,谷歌微软等。2011年谷歌开始将“深度学习”运用在自己的大数据处理上,互联网大数据与人工智能的结合为互联网大脑的智慧和意识产生奠定了基础。

4.工业4.0或工业互联网本质上是互联网运动神经系统的萌芽

互联网中枢神经系统也就是云计算中的软件系统控制工业企业的生产设备,家庭的家用设备,办公室的办公设备,通过智能化,3D打印,无线传感等技术使的机械设备成为互联网大脑改造世界的工具。同时这些智能制造和智能设备也源源不断向互联网大脑反馈大数据数,供互联网中枢神经系统决策使用。

5.互联网+的核心是互联网进化和扩张,反映互联网从广度、深度融合和介入现实世界的动态过程

什么是云计算,物联网和大数据

云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。

物联网就是物物相连的互联网。当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及到信息技术的应用,都可以纳入物联网的范畴。

“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

扩展资料

大数据的价值体现在以下几个方面:

1.对大量消费者提供产品或服务的企业可以利用大数据进行精准营销

2.做小而美模式的中小微企业可以利用大数据做服务转型

3.面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值

例如:

1.洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2.google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3.统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4.麻省理工学院利用手机定位数据和交通数据建立城市规划。

参考资料:百度百科-云计算? 百度百科-物联网? 百度百科-大数据

云计算与大数据,什么是大数据云计算,大数据就业前景

云计算与大数据概述

云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。

大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:

1、集成度更高。一个标准机箱最大限度完成特定任务。

2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。

3、整体能耗更低。同等计算任务,能耗最低。

4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。

5、管理维护费用低。数据藏的常规管理全部集成。

6、可规划和预见的系统扩容、升级路线图。

云计算与大数据的关系

简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。

可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。

大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。

而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。

不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。

什么是云计算?什么是大数据?二者有何联系?

云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。

大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。

他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。

扩展资料:

云计算常与网格计算、效用计算、自主计算相混淆。

网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;

效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;

自主计算:具有自我管理功能的计算机系统。

事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。

被普遍接受的云计算特点如下:

(1) 超大规模

“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。

(2) 虚拟化

云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。

(3) 高可靠性

“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。

(4) 通用性

云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。

(5) 高可扩展性

“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。

(6) 按需服务

“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。

大数据特征:

1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

2 种类(Variety):数据类型的多样性;

3 速度(Velocity):指获得数据的速度;

4 可变性(Variability):妨碍了处理和有效地管理数据的过程。

5 真实性(Veracity):数据的质量

6 复杂性(Complexity):数据量巨大,来源多渠道

7 价值(value):合理运用大数据,以低成本创造高价值

想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

参考资料:百度百科-大数据?百度百科-云计算

(责任编辑:IT教学网)

更多

推荐excel文章