python数据分析要学哪些东西(python数据分析要学哪些东西 csdn)
python数据分析师要学什么
熟练地使用数据分析主流工具,需要从0开始学习Python基础语法、数据容器、使用函数、逻辑判断和文件操作。数据库、数据采集核心技能,要学会主流数据库的使用,并理解数据库的概念。能独立构建结构化数据库,有能力得应对数据库中大量数据的操作和查询。数据分析高级框架,熟练地使用科学计算库Numpy,数据分析库Pandas,数据绘图模块Matplotlib,可视化库Seaborn来应对复杂问题。
Python想要从事数据分析工作,都要学习哪些知识?
就目前来说Python是人工智能的最佳编程语言,想要从事数据分析的话需要学习以下知识:
1、熟练Python语言基础,掌握数据分析建模理论、熟悉数据分析建模过程;
2、熟练NumPy、SciPy和Pandas数据分析工具的使用;特别是Pandas和Numpy,Pandas是Python中一种数据分析的包,而Numpy是一个可以借助Python实现科学计算的包,可以计算和储存大型矩阵。
3、熟练掌握数据可视化工具,结合Python学习统计学、结合Excel学习SQL,然后结合Excel数据分析来学习numpy、pandas等以及数据可视化。
如何学习python数据分析
第一阶段:Python编程语言核心基础
快速掌握一门数据科学的有力工具。
第二阶段:Python数据分析基本工具
通过介绍NumPy、Pandas、MatPlotLib、Seaborn等工具,快速具备数据分析的专业范儿。
第三阶段:Python语言描述的数学基础
概率统计、线性代数、时间序列分析、随机过程是构建数据科学的基石,这里独树一帜,通过python语言描述这些数学,快速让数学知识为我所用,融会贯通。
第四阶段:机器学习典型算法专题
这一部分利用前面介绍的基础知识,对机器学习的常用核心算法进行抽丝剥茧、条分缕析、各个击破。
第五阶段:实战环节深度应用
在这一部分利用已有的知识进行实战化的数据分析,例如:对基金投资策略、城市房屋租赁等热门数据展开围猎。