python读取文件并整理输出(python读取文件中的记录并输出)
python读取numbers数据并输出
import pandas as pd # 导入pandas包,用于读取文件
data = pd.read_excel('XXX.xlsx') # 读取文件名为XXX的文件
# data = pd.read_excel(r'XXX.xlsx') # 这行代码上行效果相同,r代表read读取文件,默认是r
data.head() # 查看数据
# data.head(6) # 查看前6行数据
登录后复制
data.to_excel('XXX.xlsx', index=False) # 将data数据集导出至名为XXX的文件中。
使用 Python 读写文件
有些数据是临时的,它们在应用程序运行时存储在内存中,然后丢弃。但是有些数据是持久的。它们存储在硬盘驱动器上供以后使用,而且它们通常是用户最关心的东西。对于程序员来说,编写代码读写文件是很常见的,但每种语言处理该任务的方式都不同。本文演示了如何使用 Python 处理文件数据。
在 Linux 上,你可能已经安装了 Python。如果没有,你可以通过发行版软件仓库安装它。例如,在 CentOS 或 RHEL 上:
在 macOS 上,你可以使用 MacPorts或Homebrew安装。在 Windows 上,你可以使用Chocolatey安装。
一旦安装了 Python,打开你最喜欢的文本编辑器,准备好写代码吧。
如果你需要向一个文件中写入数据,记住有三个步骤:
这与你在计算机上编码、编辑照片或执行其他操作时使用的步骤完全相同。首先,打开要编辑的文档,然后进行编辑,最后关闭文档。
在 Python 中,过程是这样的:
这个例子中,第一行以 写 模式打开了一个文件,然后用变量 f 表示,我使用了 f 是因为它在 Python 代码中很常见,使用其他任意有效变量名也能正常工作。
在打开文件时,有不同的模式:
第二行表示向文件中写入数据,本例写入的是纯文本,但你可以写入任意类型的数据。
最后一行关闭了文件。
对于快速的文件交互,常用有一种简短的方法可以写入数据。它不会使文件保持打开状态,所以你不必记得调用 close 函数。相反,它使用 with 语法:
如果你或你的用户需要通过应用程序需要向文件中写入一些数据,然后你需要使用它们,那么你就需要读取文件了。与写入类似,逻辑一样:
同样的,这个逻辑反映了你一开始使用计算机就已知的内容。阅读文档,你可以打开、阅读,然后关闭。在计算机术语中,“打开”文件意味着将其加载到内存中。
实际上,一个文本文件内容肯定不止一行。例如,你需要读取一个配置文件、 游戏 存档或乐队下一首歌曲的歌词,正如你打开一本实体书时,你不可能立刻读完整本书,代码也只能解析已经加载到内存中的文件。因此,你可能需要遍历文件的内容。
示例的第一行指明使用 读 模式打开一个文件,然后文件交由变量 f 表示,但就像你写数据一样,变量名是任意的。 f 并没有什么特殊的,它只是单词 “file” 的最简表示,所以 Python 程序员会经常使用它。
在第二行,我们使用了 line ,另一个任意变量名,用来表示 f 的每一行。这告诉 Python 逐行迭代文件的内容,并将每一行的内容打印到输出中(在本例中为终端或IDLE)。
就像写入一样,使用 with 语法是一种更简短的方法读取数据。即不需要调用 close 方法,方便地快速交互。
使用 Python 有很多方法向文件写入数据,包括用 JSON、YAML、TOML等不同的格式写入。还有一个非常好的内置方法用于创建和维护SQLite数据库,以及许多库来处理不同的文件格式,包括图像、音频和视频等。
via:
作者:Seth Kenlon选题:lujun9972译者:MjSeven校对:turbokernel
python文件读取与写入
open(filepath) :打开文件
open(filepath,'r') :打开方式,默认是读取
open(filepath).read() :读取文件中的内容
open(filepath).readline() :读取文件中一行的内容
open(filepath).readline()[1] :读取文件中的内容,返回值是列表。
open(filepath).close() :关闭文件
open(filepath).seek(0) :将光标回到首位
with open()函数,不用close()方法,默认自动关闭,所以需要制定一些规则.
文件内建函数和方法:
open() : 打开文件
read() :输入
readline() :输入一行
seek() :文件内移动
write() :输出
close() :关闭文件
开启数据分析的大门-数据收集:Python对文件的操作
简介
我是一名应届经济学毕业生,在学习Python语言的过程中,接触到了数据分析,机器学习和人工智能,并对此特别感兴趣,现在我把整个学习过程记录下来,希望和我有相同兴趣和爱好的朋友们一同成长,期盼着各位专家的指导。
环境介绍
在整个过程当中,将采用Python和Excel,采用Python,是因为Python提供了丰富的开发框架和工具库,使用Excel是因为Excel是使用非常广泛的办公软件,我在Excel里将复杂的算法简单化,使大家快速理解各种难以理解的算法。
在开始之前,我们已经准备好了Anaconda和Excel环境。在这里省略了这个过程。
数据获取将通过tushare开放平台,后面我会介绍和演示如何应用tushare平台。
数据分析流程简介
数据分析是由数据收集开始,收集的数据经过标准化处理和整理后,通过各种算法,进行数据分析,目的是为了总结过去的 历史 数据,在数据趋势上预测未来的走势,同时对现存的环境进行优化。
我们今天先从数据收集开始。
数据收集需要应用到Python对文件的读写操作。
下面这段代码以只读方式采用’UTF-8’编码方式打开当前目录下的text1.txt文件,并输出到屏幕上。操作完毕后,关闭文件。
小贴士:在从tushare平台获取数据时,每个用户会分配到一个key,我们可以把这个key封装到这个文件里。为的是数据安全和便利性。
Python对数据的处理主要是csv文件格式,Excel和数据库。今天我们主要针对csv文件进行操作。为的是尽快开始我们的数据分析之旅。后面在适当的时候,我来完成对Excel和数据库的操作。
Python 读取csv文件有很多种方法,我们这里采用PANDAS库,下面是读取csv文件代码:
下面这段代码先生成数据列表,然后写入csv文件。
好了,到现在为止,Python对数据收集的基础工作就算完成了,Python对文件操作有很多技巧,不是我们这一系列的重点,就不一一介绍了,有兴趣的伙伴可以查阅相关文档。