python大数据分析课程报告(python大数据分析课程报告摘要)
python怎么做大数据分析
数据获取:公开数据、Python爬虫外部数据的获取方式主要有以下两种。(推荐学习:Python视频教程)
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urlpb、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么做大数据分析的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
利用Python分析处理数据。学校大数据课程,十几年第一次开,有没有精通计算机的哥哥姐姐帮助一下。
想要系统学习数据分析,建议一定要看的数据分析圣经《利用python进行数据分析》,这本书有理论有实践,深入浅出,层层递进,适合刚入门的数据分析小白,或者还有另外一本《python机器学习基础教程》,也是比较入门级的,不过更偏向于机器学习的方向,但是也是涉及比较基础的内容,可以作为进阶来学习。手打不容易,以上回答如有帮助请采纳,谢谢!
Python数据分析(八):农粮组织数据集探索性分析(EDA)
这里我们用 FAO(Food and Agriculture Organization) 组织提供的数据集,练习一下如何利用python进行探索性数据分析。
我们先导入需要用到的包
接下来,加载数据集
看一下数据量,
看一下数据的信息,
我们先来看一下variable,variable_full这两列的信息,
看一下统计了多少国家,
看一下有多少个时间周期,
看一下时间周期有哪些,
我们看一下某一列某个指标的缺失值的个数,比如variable是total_area时缺失值的个数,
我们通过几个维度来进行数据的分析:
我们按照上面的处理继续,现在我们想统计一下对于一个时间周期来说,不同国家在这个周期内的变化情况,
我们也可以按照国家分类,查看某个国家在不同时期的变化,
我们还可以根据属性,查看不同国家在不同周期内的变化情况,
我们还可以给定国家和指标,查看这个国家在这个指标上的变化情况,
我们还有region(区域)没有查看,我们来看一下:
通过上图可以看出,区域太多,不便于观察,我们可以将一些区域进行合并。减少区域数量有助于模型评估,可以创建一个字典来查找新的,更简单的区域(亚洲,北美洲,南美洲,大洋洲)
我们来看一下数据变化,
紧接着上面的数据处理,我们重新导入一下包,这次有一些新包,
我们看一下水资源的情况,
通过上图可以看出只有一小部分国家报告了可利用的水资源总量,这些国家中只有极少数国家拥有最近一段时间的数据,我们将删除变量,因为这么少的数据点会导致很多问题。
接下来我们看一下全国降雨指数,
全国降雨在2002年以后不再报到,所以我们也删除这个数据,
我们单独拿出一个洲来进行分析,举例南美洲,我们来看一下数据的完整性,
我们也可以指定不同的指标,
接下来,我们使用 pandas_profiling 来对单变量以及多变量之间的关系进行统计一下,
这里我们要计算的是,比如
我们按照 rural_pop 从小到大进行排序,发现的确有几个国家的农村人口是负数,
人口数目是不可能小于0,所以这说明数据有问题,存在脏数据,如果做分析预测时,要注意将这些脏数据处理一下。
接下来我们看一下偏度,我们规定,
正态分布的偏度应为零,负偏度表示左偏,正偏表示右偏。
偏度计算完后,我们计算一下峰度, 峰度也是一个正态分布,峰度不能为负,只能是正数 ,越大说明越陡峭,
接下来我们看一下,如果数据分布非常不均匀该怎么办呢,
上图是2013-2017年国家总人数的分布,通过上图我们发现,人口量少于200000(不考虑单位)的国家非常多,人口大于1200000的国家非常少,如果我们需要建模的话,这种数据我们是不能要的。这个时候我们应该怎么办呢?
通常,遇到这种情况,使用 log变换 将其变为正常。 对数变换 是数据变换的一种常用方式,数据变换的目的在于使数据的呈现方式接近我们所希望的前提假设,从而更好的进行统计推断。
接下来,我们用log转换一下,并看一下它的偏度和峰值,
可以看出偏度下降了很多,减少了倾斜。
可以发现峰度也下降了,接下来我们看一下经过log转换后的数据分布,
虽然数据还有一些偏度,但是明显好了很多,呈现的分布也比较标准。
首先我们先来看一下美国的人口总数随时间的变化,
接下来,我们查看北美洲每个国家人口总数随着时间的变化,
这个时候我们发现,一些国家由于人口数量本身就少,所以整个图像显示的不明显,我们可以改变一下参照指标,那我们通过什么标准化?我们可以选择一个国家的最小、平均、中位数、最大值...或任何其他位置。那我们选择最小值,这样我们就能看到每个国家的起始人口上的增长。
我们也可以用热度图来展示,用颜色的深浅来比较大小关系,
接下来我们分析一下水资源的分布情况,
我们可以进行一下log转换,
我们用热度图画一下,
连续值可以画成散点图,方便观看,
我们来看一下随着季节变化,人均GDP的变化情况,
相关程度:
相关度量两个变量之间的线性关系的强度,我们可以用相关性来识别变量。
现在我们单独拿出来一个指标分析是什么因素与人均GDP的变化有关系,正相关就是积极影响,负相关就是消极影响。
当我们在画图的时候也可以考虑一下利用bined设置一下区间,比如说连续值我们可以分成几个区间进行分析,这里我们以人均GDP的数量来进行分析,我们可以将人均GDP的数据映射到不同的区间,比如人均GDP比较低,比较落后的国家,以及人均GDP比较高,比较发达的国家,这个也是我们经常需要的操作,
做一下log变换,这里是25个bin
我们指定一下分割的标准,
我们还可以看一下人均GDP较低,落后国家的内部数据,下面我们看一下内部数据分布情况,用boxplot进行画图,
对于这部分的分布,我们还可以统计看一下其他指标,如下图所示,我们还可以看一下洪水的统计信息,
求一份计算机本科的毕业设计,题目只要计算机类的就可以
计算机毕业设计
基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码
基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据
基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件
基于C++的即时通信软件设计 毕业论文+项目源码
基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件
基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码
基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件
基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件
基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码
基于QT的教务选课管理系统设计与实现 毕业论文+项目源码
基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码
基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据
基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件
基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频
基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书
基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码
基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码
基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码
高校成绩管理数据库系统的设计与实现 毕业论文+项目源码
基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件
基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件
基于Python的语音词频提取云平台 设计报告+设计源码
在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码
基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件
基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码
基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码
基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件
基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件
基于Python_Django的社会实践活动管理系统设计与实现 毕业论文
基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码
基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件
基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码
基于Java的毕业设计题目收集系统 课程报告+项目源码
基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码
基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件
基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件
基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件
基于Java的长整数加减法算法设计 毕业论文+项目源码
基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码
基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码
基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码
基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件
如何使用Python分析大数据
毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指数级增长。这种消费数据对于想要更好地定位目标客户、弄懂人们怎样使用他们的产品或服务,并且通过收集信息来提高利润的公司来说无疑是个金矿。
筛查数据并找到企业真正可以使用的结果的角色落到了软件开发者、数据科学家和统计学家身上。现在有很多工具辅助大数据分析,但最受欢迎的就是Python。
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼,和索尼梦工厂。还有,Python是开源的,并且有很多用于数据科学的类库。所以,大数据市场急需Python开发者,不是Python开发者的专家也可以以相当块速度学习这门语言,从而最大化用在分析数据上的时间,最小化学习这门语言的时间。
用Python进行数据分析之前,你需要从Continuum.io下载Anaconda。这个包有着在Python中研究数据科学时你可能需要的一切东西。它的缺点是下载和更新都是以一个单元进行的,所以更新单个库很耗时。但这很值得,毕竟它给了你所需的所有工具,所以你不需要纠结。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要成为一个Python开发者。这并不意味着你需要成为这门语言的大师,但你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
各种类库
当你掌握了Python的基本知识点后,你需要了解它的有关数据科学的类库是怎样工作的以及哪些是你需要的。其中的要点包括NumPy,一个提供高级数学运算功能的基础类库,SciPy,一个专注于工具和算法的可靠类库,Sci-kit-learn,面向机器学习,还有Pandas,一套提供操作DataFrame功能的工具。
除了类库之外,你也有必要知道Python是没有公认的最好的集成开发环境(IDE)的,R语言也一样。所以说,你需要亲手试试不同的IDE再看看哪个更能满足你的要求。开始时建议使用IPython Notebook,Rodeo和Spyder。和各种各样的IDE一样,Python也提供各种各样的数据可视化库,比如说Pygal,Bokeh和Seaborn。这些数据可视化工具中最必不可少的就是Matplotlib,一个简单且有效的数值绘图类库。
所有的这些库都包括在了Anaconda里面,所以下载了之后,你就可以研究一下看看哪些工具组合更能满足你的需要。用Python进行数据分析时你会犯很多错误,所以得小心一点。一旦你熟悉了安装设置和每种工具后,你会发现Python是目前市面上用于大数据分析的最棒的平台之一。
希望能帮到你!