python导入pandas包(pycharm导入pandas)

http://www.itjxue.com  2023-04-10 02:55  来源:未知  点击次数: 

请问一下python中已经安装过pandas包,但是导入的时候为什么发生这个错误,应该怎么解决

你遇到的问题一看就是少装了包。在windows下安装pandas,只安装pandas一个包显然是不够的,它并没有把用到的相关包都打进去,这点是很麻烦的,只有等错误信息出来后才知道少了哪些包。

我总结了一下,一共需要安装如下包:

pyparsing-2.0.2.win32-py2.7.exe

matplotllib-1.3.1.win32-py2.7.exe

openpyxl-openpyxl-5d2c0c8704d2.tar.gz

setuptools-3.8.1.win32-py2.7.exe

numpy-MKL-1.8.1.win32-py2.7.exe

six-1.7.3.win32-py2.7.exe

python-dateutil-2.2.win32-py2.7.exe

Python pandas用法

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。

使用下面格式约定,引入pandas包:

pandas有两个主要数据结构:Series和DataFrame。

Series是一种类似于一维数组的对象,它由 一组数据 (各种NumPy数据类型)以及一组与之相关的 数据标签(即索引) 组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

pd.Series(list,index=[ ]) ,第二个参数是Series中数据的索引,可以省略。

Series类型索引、切片、运算的操作类似于ndarray,同样的类似Python字典类型的操作,包括保留字in操作、使用.get()方法。

Series和ndarray之间的主要区别在于Series之间的操作会根据索引自动对齐数据。

DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index为指定的列、行索引,并按照顺序排列。

如果创建时指定了columns和index索引,则按照索引顺序排列,并且如果传入的列在数据中找不到,就会在结果中产生缺失值:

数据索引 :Series和DataFrame的索引是Index类型,Index对象是不可修改,可通过索引值或索引标签获取目标数据,也可通过索引使序列或数据框的计算、操作实现自动化对齐。索引类型index的常用方法:

重新索引 :能够改变、重排Series和DataFrame索引,会创建一个新对象,如果某个索引值当前不存在,就引入缺失值。

df.reindex(index, columns ,fill_value, method, limit, copy ) :index/columns为新的行列自定义索引;fill_value为用于填充缺失位置的值;method为填充方法,ffill当前值向前填充,bfill向后填充;limit为最大填充量;copy 默认True,生成新的对象,False时,新旧相等不复制。

删除指定索引 :默认返回的是一个新对象。

.drop() :能够删除Series和DataFrame指定行或列索引。

删除一行或者一列时,用单引号指定索引,删除多行时用列表指定索引。

如果删除的是列索引,需要增加axis=1或axis='columns'作为参数。

增加inplace=True作为参数,可以就地修改对象,不会返回新的对象。

在pandas中,有多个方法可以选取和重新组合数据。对于DataFrame,表5-4进行了总结

适用于Series和DataFrame的基本统计分析函数 :传入axis='columns'或axis=1将会按行进行运算。

.describe() :针对各列的多个统计汇总,用统计学指标快速描述数据的概要。

.sum() :计算各列数据的和

.count() :非NaN值的数量

.mean( )/.median() :计算数据的算术平均值、算术中位数

.var()/.std() :计算数据的方差、标准差

.corr()/.cov() :计算相关系数矩阵、协方差矩阵,是通过参数对计算出来的。Series的corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。DataFrame的corr和cov方法将以DataFrame的形式分别返回完整的相关系数或协方差矩阵。

.corrwith() :利用DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。传入一个Series将会返回一个相关系数值Series(针对各列进行计算),传入一个DataFrame则会计算按列名配对的相关系数。

.min()/.max() :计算数据的最小值、最大值

.diff() :计算一阶差分,对时间序列很有效

.mode() :计算众数,返回频数最高的那(几)个

.mean() :计算均值

.quantile() :计算分位数(0到1)

.isin() :用于判断矢量化集合的成员资格,可用于过滤Series中或DataFrame列中数据的子集

适用于Series的基本统计分析函数,DataFrame[列名]返回的是一个Series类型。

.unique() :返回一个Series中的唯一值组成的数组。

.value_counts() :计算一个Series中各值出现的频率。

.argmin()/.argmax() :计算数据最大值、最小值所在位置的索引位置(自动索引)

.idxmin()/.idxmax() :计算数据最大值、最小值所在位置的索引(自定义索引)

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。下表对它们进行了总结,其中read_csv()、read_table()、to_csv()是用得最多的。

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。

在许多数据分析工作中,缺失数据是经常发生的。对于数值数据,pandas使用浮点值NaN(np.nan)表示缺失数据,也可将缺失值表示为NA(Python内置的None值)。

替换值

.replace(old, new) :用新的数据替换老的数据,如果希望一次性替换多个值,old和new可以是列表。默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。

删除重复数据

利用函数或字典进行数据转换

df.head():查询数据的前五行

df.tail():查询数据的末尾5行

pandas.cut()

pandas.qcut() 基于分位数的离散化函数。基于秩或基于样本分位数将变量离散化为等大小桶。

pandas.date_range() 返回一个时间索引

df.apply() 沿相应轴应用函数

Series.value_counts() 返回不同数据的计数值

df.aggregate()

df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引。常与groupby()一起用

numpy.zeros()

python读取numbers数据并输出

import pandas as pd # 导入pandas包,用于读取文件

data = pd.read_excel('XXX.xlsx') # 读取文件名为XXX的文件

# data = pd.read_excel(r'XXX.xlsx') # 这行代码上行效果相同,r代表read读取文件,默认是r

data.head() # 查看数据

# data.head(6) # 查看前6行数据

登录后复制

data.to_excel('XXX.xlsx', index=False) # 将data数据集导出至名为XXX的文件中。

python在导入pandas时出现问题

你遇到的问题一看就是少装了包。在windows下安装pandas,只安装pandas一个包显然是不够的,它并没有把用到的相关包都打进去,这点是很麻烦的,只有等错误信息出来后才知道少了哪些包。

我总结了一下,一共需要安装如下包:

pyparsing-2.0.2.win32-py2.7.exe

matplotllib-1.3.1.win32-py2.7.exe

openpyxl-openpyxl-5d2c0c8704d2.tar.gz

setuptools-3.8.1.win32-py2.7.exe

numpy-MKL-1.8.1.win32-py2.7.exe

six-1.7.3.win32-py2.7.exe

python-dateutil-2.2.win32-py2.7.exe

这些安装包的下载地址是:

另外一个很重要的注意事项是版本问题,Python扩展包和Python的版本严格相关,不同版本的Python,其扩展包的版本也不同。

最后一个注意事项是32位和64位不要搞混了,所有扩展包都分32位和64位两种版本。

总体来说,个人感觉Python和Pandas不适合用于windows操作系统,它在ubuntu下使用更顺溜许多。如果你主要在windows下使用的话,建议还是试试esProc,它的计算能力比Pandas还强,更适合windows下使用。

(责任编辑:IT教学网)

更多

推荐照片处理文章