地质建模,地质建模软件petrel

http://www.itjxue.com  2023-01-08 03:35  来源:未知  点击次数: 

区域地质建模主要问题

综合来讲研究中主要存在如下一些问题:

1.钻孔之间的地层连接问题

对于建立了区域内标准地层,并且钻孔分层严格按照地层顺序划分的区域地层建模可实现自动连接;但对于钻孔分层相对于标准地层层序存在倒转、互层的情况无法实现自动连接,但手工链接又过于复杂,在钻孔密度较大、地层较复杂的情况下甚至根本无法实现。这一问题可以说是制约基于钻孔的三维地质建模中的一个关键问题。

2.特殊地质现象建模依然困难

实际建模过程中由于控制数据太少,对于古河道、透镜体、尖灭等特殊地质现象建模依然困难;由于地质多解性,自动构建的模型准确性、合理性无法保证,而手动构建又太繁琐,甚至不可行。

3.包含断层、褶皱等复杂地质体建模问题

包含断层、褶皱等复杂地质现象的地质体建模依然是三维地质建模中的难点,一是控制数据少无法有效描述这些复杂地质体的空间形态,二是不同地质面、体之间存在交切等复杂关系自动处理根本无法实现,而手动调整又太繁琐。

4.模型精度问题

在控制数据已经固定的情况下如何有效提高模型精度。改进插值算法,引入人工交互,添加更多的约束数据(如虚拟钻孔等)看来是可尝试的方法。

5.多种建模方法的融合问题

如何将基于钻孔的三维地层建模与断层线框架建模及地质剖面建模法很好地进行结合。

6.大数据量模型的数据调度与三维显示问题

整个城市范围内具备相当精细程度的模型数据量庞大,传统技术难以进行流畅显示,需要研究并引入分块、分实体调度算法及基于不规则三角网的LOD技术。

7.三维模型拓扑关系处理

生成复杂地质体之间较完善的拓扑关系;利用拓扑关系进行不同模型交、并、差运算。

地质体建模

(一)一般地质体构建算法

通过表面表示法表示地质体具有存储量小,建模速度快的优点,本文的地质体采用面表面表示法。一个地质体由多个地层组成,一个地层可以由以下的表面组成,如图4-68所示。

图4-68 地质体的几何构成

①两个相邻的地层顶面组成一个地层的上表面和下表面。

②地层与每个断面相交而成的曲面称为内围边。

③地层与每个工区表面相交而成的曲面称为外围边。

在一般情况下,在已知地层面和断层面的情况,都采用地层面和断层面求交的方法来计算地质体。具体算法如下:

(1)将地层面排序。

根据地层顶面的海拔排序,按从海拔低到海拔高的地层顶面的顺序下,前一地层面是随后的地层面地层底面,n个地层顶面可以构造n-1个地层体。如图4-69所示:三个地层顶面表示两个地层体,最下面的地层顶面不需要计算实际的地层体。

断面与地层面求交,每两个相邻的地层与断层求到一组交线,将交线整理连称多边形环(可能多个),将每个环细分为三角形网格,根据断面的采样点插值求得的每个环的表示的曲面,得到内围边。

图4-69 地层排序

(2)用工区表面与地层面及断面求交,得到多组环。

如图4-70所示:得到地层与工区表面的围边。围边和地层表面共同组成了地层体——外围边。

图4-70 外围边连环示意图

在这个算法求交的过程中,断面与地层面求交存在需要严格控制几何一致性的问题,否则可能造成在连环的过程中因几何位置不统一,连环失败的情况,对建模的精度要求很高。如图4-71所示,地层顶面之间有互相相交的情况,在连环时难以处理:

图4-71 地层面互相侵入图

综上所述,直接通过曲面求交的方式来构建地质体数值稳定性很难得到保证,本文在建立地层面模型时采用的是基于变形场的地层面模型构建算法,根据该算法思想可知,变形场可以作用于整个建模空间,对整个地层体同样有效,所以可以通过已建立好的变形场来解决地质体建模的问题。

(二)地层体构建算法

本算法是在已知地层面和断层面的情况下,采取变形场的方法来构造地质体。根据变形场建模的思想,所有的地质元素都是在逐步断裂的情况下,形变达到当前的形态的,所以地质体的围边也是由初始的形态变形而成的。初始状态的地层与断层面相交形成的围边具有形状简单的特点,一般情况只有四个拐点,初始地层面的围边易于求解,所以可以采用通常的方法求得初始地层的围边,然后将变形场逐级作用于初始围边,就可以得到当前状态下地层体的围边了。生成地层的具体算法如下:

(1)首先构建地层初始网格,及地层的初始外围边网格;

(2)按断裂顺序找到当前断裂的断面,直至地层没有新裂口为止;

(3)复制一份断层网格记为A,用地层裁剪断层网格A分为若干地层围边,分层后的断层网格被复制两份,一份是断层左侧地层裂口的内围边,一份是断层右侧地层裂口的内围边;

(4)将该断层的变形场作用到地层上及其围边上,地层的表面网格发生形变,围边网格发生变形;

(5)按上述步骤(2),(3),(4)作用于地层面即可得到地层的体网格。

虽然在这个过程中地层和断层有求交的操作,但这种操作可以保证是在连续地层面和断面之间的求交,所以稳定性高,初始地层面的易于求交简单。变形后的地层体如图4-72所示:

图4-72 不连续的地层体

(三)小结

本小节介绍了在基于变形场的地质元素的生成方法,充分证明了变形场和断面树机制不仅能应用于地层构建,也在地质体构建中起到框架的作用,变形场和断面树作为整个地质体模型建模框架有效地完成构造信息自动建模工作。

三维地质建模方法

自20世纪80年代以来,研究人员提出了许多三维地质模型来模拟地质体,使这方面的研究有了长足的发展。通过对国内外大量的三维地质建模方面的文献和专业软件的研究分析,三维地质建模方法大体可归纳为三类:离散点源法、剖面框架法和多源数据耦合建模法。

1.2.3.1 离散点源法

在地质找矿中,经常需要根据少量的离散点采样数据(如地质测绘或钻孔资料)来获取地质体的形状,从而为进一步指导找矿起指导性的作用。因此,研究如何实现空间散乱点数据场可视化的方法具有一定的意义。

Carlson(1987)从地质学的角度提出了地下空间结构的三维概念模型,并提出用单纯复形模型(Simplicial Complex Model)来建立地质模型。Victor(1993)、Pilout(1994)则具体应用Delaunay四面体的三维矢量数据模型研究离散点地质建模问题。Lattuada(1995)对3DDT(3 Dimensional Delaunay Triangulation)在地质领域内的应用进行了研究,表明四面体格网能很好地用于地质体的三维建模,优点包括:四面体单元易于建立索引;模型易于手工编辑;可通过相邻关系导出拓扑结构;约束三角剖分易于实现面约束;四面体非常便于可视化,同时具有较高的表达精度;易于实现搜索和关系查询等。Courrioux et al.(2001)基于Voronoi图实现了地质对象实体的自动重构。Frank et al.(2007)采用隐函数法(implicit function)表达三维曲面,对离散点集进行三维重构(reconstruction),用来模拟断层和盐丘(salt dome)。杨钦(2001,2005)利用离散点源信息构建地层与断层结构面,依此作为约束条件约束Delaunay剖分建立三维地质模型。

钻孔数据也属于一种点源信息。它实质上是将原始的点、线数据进行有效的分层,根据各层面标高应用曲面构造法来生成各个层面或实体。围绕钻孔数据进行三维地质建模已有许多学者进行了研究,其中较早利用钻孔数据进行三维地质模拟的是加拿大学者Houlding(1994,2000),利用钻孔孔口点位信息进行 Delaunay三角剖分,作为“主 TIN(Primary TIN)”,其他地层面则通过高程映射实现。张煜等(2001)对其建模方法进行了深入研究与发展,在垂直钻孔的理想状态下,采用三棱柱(Tri-prism,TP)数据模型建立三维地质模型,并给出了相关的剖切算法。Lemon et al.(2003)采用“地层层位法”建立三维地层模型,并采用自定义剖面(user-defined cross-sections)的方法对地质模型进行局部交互修正。吴江斌(2003)、朱合华等(2003)提出一种基于钻孔数据的二分拓扑数据结构的建模算法,尝试采用基于钻孔数据的四面体体元模型构建地下三维地质模型;四面体结构在表达复杂结构上则较灵活,但是使用四面体表示空间实体会产生大量的冗余,且生成四面体的算法比较复杂。张芳(2005)采用Delaunay三角构网技术,利用钻孔数据构建三维地层层面模型,同时引入“界面分片”思想,以适应于海量数据模型的可视化表达,但缺少对地质体属性信息的表达。在三棱柱模型的基础上,针对钻孔存在偏斜问题,类三棱柱(Analogical Tri-prism,ATP)(齐安文等,2002)、广义三棱柱(Generalized Tri-prism,GTP)(Wu,2004)方法先后被提出,用来进行三维地质建模,已被证明广泛适应于矿山、石油等深部地质问题建模;同时,似三棱柱(Similar Triprism,STP)(Gong et al.,2004)也被提出用于解决钻孔倾斜问题,如郑蔚等(2005)基于钻孔数据采用STP建立三维地质模型对地下空间进行虚拟漫游。STP与GTP本质上是相同的。基于钻孔数据建立三维地质建模,这一看似简单的数据模型方法,经历了10多年的发展历程:从初期的TP数据模型,适用于钻孔垂直成层、地层等厚的理想情况,发展到STP、GTP适用于钻孔不垂直且地层不等厚的常见情况。

1.2.3.2 剖面框架法

剖面框架法就是在收集整理原始地质勘探资料的基础上,建立分类数据库,人工交互生成大量的二维地质剖面,然后应用曲面构造法生成各层位面表达三维地质模型,或者利用体元表示法直接进行地质体建模(Chae et al.,1999)。

利用地质剖面表达研究区域三维地质现象的初级形式是序列地质剖面法(朱小弟等,2001)。序列地质剖面构模技术实质是传统地质制图方法的计算机实现,即通过平面图或剖面图来描述地质构造,记录地质信息,如图1.2所示。其特点是将3D问题2D化,在空间上采用若干平行或近似平行的地质剖面来表达研究区域的地质分布特征,但它在空间表达上是不完整的,它把剖面之间的地层或构造分布情况留给工程设计人员去“想象”。这种构模方法难以完整表达3D矿床及其内部构造。

基于剖面信息建立真三维模型具有很大的发展空间,对于复杂地质构造区域具有很好的适应性,成为当前地质建模的主要方法之一。然而,基于剖面进行三维重构得到完善发展的是在医学领域,后来迅速扩展到其他领域。在医学领域里,通过电脑断层扫描(CAT)或者核磁共振(MRI)等技术,可以获得一系列相互平行的人体切片图像,通过提取对象的边界,基于轮廓线算法,生成三维人体模型。地质剖面信息同医学切片信息一样,都是反映研究对象的某一特定断面上的构造分布,可以借助医学三维人体建模技术来构造三维地质模型。较早将医学领域的切面三维建模引入地学领域的是在考古学方面的应用(Tipper,1976,1977;Herbert et al.,1995),主要应用在古生物的三维重构方面,而应用在三维地质建模方面的文献并不很多。

图1.2 序列地质剖面构模实例

公认的剖面三维重构的代表之作是Keppel的文章(Meyres et al.,1992;Herbert et al.,1995,2001;Xu et al.,2003;屈红刚等,2003)。在Keppel的研究基础上,Meyres(1992)将剖面建模方法分为4个子问题:对应问题(correspondence problem)、构网问题(tiling problem)、分支问题(branching problem)和光滑问题(fitting problem):①对应问题解决相邻剖面之间的轮廓线匹配问题;②构网问题主要解决轮廓线之间的三角形构网问题,考虑满足某个准则,例如最大体积法(Keppel,1975)、最小面积法(Fuchsetal.,1977)等;③分支问题是解决同一对象在不同剖面上的组成部分的个数不同的问题;④光滑问题主要解决将初始生成的三角网进行插值,从而得到更加光滑的三角网。

屈红刚等(2003)提出基于含拓扑剖面地质建模方法来实现复杂地质的三维建模的对应问题,邓飞等(2007)则对一般意义上的剖面地质建模进行了讨论。

1.2.3.3 多源数据耦合建模法

随着计算机性能的提高,具备了对海量数据的处理能力,人们对建立的地质模型要求也不断提高,希望能够建立高精度和高复杂度的地质模型(Turner,2003,2006;Calcagno et al.,2006;Kaufmann et al.,2008)。提高模型的精度可以通过插值的方法来实现,但更好的方法是通过增加约束信息来对初始地质模型进行细化,这就涉及耦合多源数据来建立地质模型的问题。

早在1993年,Houlding提出三维地学建模概念的时候就强调地质解释信息具备对模型的修正(revision)功能。并且指出矿业工程有地质勘探数据、人工绘制数据及施工数据,还有不确定性的需要通过地质统计学进行估计的数据(Houlding,2000),最终的地质模型需要综合考虑这些种类不同的数据。

McInerney et al.(2005a,b)认为三维地质建模只能部分上是一个数字地质采样过程,更重要的是地质学家的人工解释过程。并且尖锐地指出,不要指望一些计算机软件能够自动并成功地“建模”! 让一个有经验的地质学家输入解释性的信息进行建模,是现实和必要的;而软件只是建模过程中提供便利的一个工具(There is no expectation that some computer software will successfully and automatically“builda model”! The reality is that interpretative input from a skilled geologist is essential to build a model;the software is simply a tool to facilitate the model-building process)。其要求实际上是,地质建模不仅要考虑地质勘探所获取的确定性数据,还应加入地质工程人员对地质构造的解释性数据,这就构成多源地质建模的基本思想。

Mallet(2002)针对地质体建模的特殊性和复杂性,以点、线数据为主要数据源,建立以三角形为基本单元的三维曲面,采用离散光滑插值技术(Discrete Smooth Interploate,DSI)使曲面的粗糙度最小,并作为GOCAD的核心技术,得到了许多地球物理公司和石油公司的支持。

相比较国外以石油、矿业工程为主要应用领域的三维地质建模,钟登华等(2006)则从水利水电工程地质领域,研究多源地质数据建立坝区的三维地质模型。Wu et al.(2005)提出一种逐步细分的多源数据集成地质建模方法,考虑到地质数据大多比较稀疏和低采样率的特征,采用逐步细化的方法对初始地质模型不断修正。

地质构造的复杂性和认识的阶段性,使多源地质建模引起越来越多的研究兴趣。32届国际地质大会(International Geological Conference,IGC)于2004年在意大利佛罗伦萨召开,在“地质的复兴(The Renaissance of Geology)”(Zanchi et al.,2007)议题上,多名国际知名的地学建模专家共同提到了多源地质建模问题。其中,Zanchi et al.(2008)借助商业软件对意大利境内阿尔卑斯山(Alps)利用多源地质建模问题进行研究,并应用于滑坡稳定性分析。西方发达国家主要将地质建模应用于能源与环境领域,这是为数不多的在工程建设领域开辟蹊径的研究。无独有偶,Kaufmann et al.(2008)尝试采用多源地质建模,研究在废弃煤矿巷道内进行天然气储存问题。

总体来看,三维地质建模技术是一个从简单地层模拟到复杂地质构造模拟的发展过程。从最初基于单一数据建立简单层状三维地质模型,到综合利用多源数据建立复杂地质模型,能够反映地质构造的空间特征。

三维地质建模

一、内容概述

随着世界各国对资源需求日益上升以及对地质环境问题的日益重视,各国研究机构都将提高资源保障能力、缓解环境压力的目光逐步转向了地球深部,这就需要对地下空间有更详细、更好地了解。正是这种社会需求的不断增长,以及地理信息系统(GIS)、数字制图、数据存储和分析、可视化技术上显著的技术进步,直接促使了从传统的二维向三维地质填图(也称为三维地质建模)的过渡成为必然。

三维地质图是传统的二维地质图向三维的延伸。这些地图可以描绘三维空间内地下层叠地层的深度、厚度和物质性质。输出的结果是通过地质解译,以及严格应用原始数据、地质知识和统计方法而创建的完全属性化和数字化的三维模型。

二维和三维输出结果都采用了相似的地质构造单元分类,并针对特定用途和相关机构的需要,按照一定的比例尺和分辨率加以呈现。三维填图完成的三维地质模型可以为需要解决地球科学问题的客户提供信息,因为:①完成的三维地质图,可以以可理解的格式、用多种地图视图解释和描绘复杂的地质情况;②当有新信息可用时,可以制作和更新各种衍生或解译图;③针对地球资源信息的特定需求,根据客户需要进行发布和定制(Berg et al.,2011)。

二、应用范围及应用实例

目前,美国地质调查局的科学家使用三维/四维工具来进行以下工作:①可视化和解释地质信息;②验证数据;③验证他们的解译和模型。三维地质填图的例子包括对面向资源评价的地下空间描述,如美国中部的含水层描述,以及作为过程模型的输入参数,如美国西部的地震。同时,USGS希望通过开发新的三维/四维工具和框架,以及通过对现有技术的提高和更有效的利用,扩大其三维/四维处理能力来监测、解译和分发自然资源信息。

加拿大地质调查局已经将三维地质填图融入了各项工作。然而,地下水研究对于三维地质填图的需求还没有从传统的地质调查上完全转变过来。盆地分析的概念是加拿大地质调查局开展三维地质填图的基础。在此框架下,工作重点放在了数据收集和了解盆地的地质历史。盆地分析在地下水研究项目中已经作为一种常见的三维研究方法。后续在GIS软件中的数据处理、插值、可视化仍然酌情根据地理和地质的复杂性、研究目标和需求而定。

英国地质调查局的三维地质模型名为LithoFrame。它代表了地质图从二维扩展到三维(表1)。LithoFrame概念的核心是不同分辨率的模型彼此对应,形成从一般的全国模型到详细的现场模型的无缝过渡。

表1 LithoFrame分辨率的主要特点

注:LithoFrame比例尺:1M为1∶100万;250为1∶25万;50为1∶5万;10为1∶1万。

法国地质调查局的三维建模主要涉及3个领域:公共服务、国际合作项目以及与许多合作伙伴和客户合作开展的科研活动:

1)公共服务:欧盟、法语国家、地区政府和城镇机关;

2)国际项目:私营公司和外国政府;

3)研究:实验室和合作大学。

法国地质调查局的三维建模活动的主要应用领域是地质调查、含水层的保护和管理、城市地质、地震风险评价、土木工程、碳捕获和存储研究、地热潜力、矿产资源开采和采后评价。

国外地质调查机构用于创建三维地质图和模型最常用的软件套件包括ArcGIS、Gocad、EarthVision、三维GeoModeller,GSI3 D、Multilayer-GDM和Isatis。这些软件中,GSI3 D、三维GeoModeller和Multilayer-GDM由地质调查机构自行开发,并根据其机构对地质填图和建模的需求进行定制。许多其他软件包也用在地质调查机构的部分建模工作流程中,其中包括GIS、统计学分析、地震深度转换、可视化和属性建模的软件。

三、资料来源

Berg R C,Mathers S J et al.2011.Synopsis of Current Three Dimensional Geological Mapping and Modeling in Geological Survey Organizations.Ilinois State Geological Survey Circular,104

(责任编辑:IT教学网)

更多

推荐照片处理文章