python入门书籍推荐知乎(python最全面的入门书籍推荐)
零基础学Python应该学习哪些入门知识
关于零基础怎么样能快速学好Python的问题,百度提问和解答的都很多,你可以百度下看看。我觉得从个人自学的角度出发,应从以下几个方面来理解:
1 为什么选择学python?
据统计零基础或非专业的人士学python的比较多,据HackerRank开发者调查报告2018年5月显示(见图),Python排名第一,成为最受欢迎编程语言。Python以优雅、简洁著称,入行门槛低,可以从事Linux运维、Python Web网站工程师、Python自动化测试、数据分析、人工智能等职位,薪资待遇呈上涨趋势。
2 入门python需要那些准备?
2.1 心态准备。编程是一门技术,也可说是一门手艺。如同书法、绘画、乐器、雕刻等,技艺纯熟的背后肯定付出了长时间的反复练习。不要相信几周速成,也不能急于求成。编程的世界浩瀚无边,所以请保持一颗敬畏的心态去学习,认真对待写下的每一行代码,甚至每一个字符。收拾好自己的心态,向着编程的世界出发。第一步至关重要,关系到初学者从入门到精通还是从入门到放弃。选一条合适的入门道路,并坚持走下去。
2.2 配置 Python 学习环境。选Python2 还是 Python3?入门时很多人都会纠结。二者只是程序不兼容,思想上并无大差别,语法变动也并不多。选择任何一个入手,都没有大影响。如果你仍然无法抉择,那请选择 Python3,毕竟这是未来的趋势。
编辑器该如何选?同样,推荐 pycharm 社区版,配置简单、功能强大、使用起来省时省心,对初学者友好,并且完全免费!其他编辑器如:notepad++、sublimeText 3、vim 和 Emacs等不推荐了。
操作环境?Python 支持现有所有主流操作平台,不管是 windows 还是 mac 还是 linux,都能很好的运行 Python。并且后两者都默认自带 Python 环境。
2.3 选择自学的书籍。我推荐的书的内容由浅入深,建议按照先后顺序阅读学习:
2.3.1《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。就算没有基础,你也可以像读小说一样,花两天时间就可以读完。适合入门快速了解语法。
2.3.2 廖雪峰编写的《Python教程》。廖先生的教程涵盖了 Python 知识的方方面面,内容更加系统,有一定深度,有一定基础之后学习会有更多的收获。
2.4 学会安装包。Python中有很多扩展包,想要安装这些包可以采用两种方法:
2.4.1 使用pip或easy_install。
1)在网上找到的需要的包,下载下来。eg. rsa-3.1.4.tar.gz;
2)解压缩该文件;
3)命令行工具cd切换到所要安装的包的目录,找到setup.py文件,然后输入python setup.py install
2.4.2 不用pip或easy_install,直接打开cmd,敲pip install rsa。
3 提升阶段需要恒心和耐力。
完成入门阶段的基础学习之后,常会陷入一个瓶颈期,通过看教程很难进一步提高编程水平。这时候,需要的是反复练习,大量的练习。可以从书上的例题、作业题开始写,再写小程序片段,然后写完整的项目。我们收集了一些练习题和网站。可根据自己阶段,选择适合的练习去做。建议最好挑选一两个系列重点完成,而不是浅尝辄止。
3.1 多做练习。推荐网站练习:
crossin编程教室实例:相对于编程教室基础练习着重于单一知识点,
编程实例训练对基础知识的融会贯通;
hackerrank:Python 部分难度循序渐进,符合学习曲线
实验楼:提升编程水平从做项目开始;
codewar:社区型编程练习网站,内容由易到难;
leetcode:为编程面试准备,对初学者稍难;
牛客网:提供 BAT 等大厂笔试题目;
codecombat:提供一边游戏一边编程;
projecteuler:纯粹的编程练习网站;
菜鸟教程100例:基于 py2 的基础练习;
3.2 遇到问题多交流。
3.2.1 利用好搜索引擎。
3.2.2 求助于各大网站。推荐
stackoverflow:这是一个程序员的知识库;
v2ex:国内非常不错的编程社区,不仅仅是包含程序,也包含了程序员的生活;
segmentfault:一家以编程问答为主的网站;
CSDN、知乎、简书等
3.2.3 加入相关的QQ、微信群、百度知道。不懂的可以随时请教。
自学python的学习路线是什么?推荐一些python学习资源
第一个阶段
初级,掌握Python的语法和一些常用库的使用
这里首先推荐廖雪锋在网上的书籍,这是Python2.7版本的,这本书适合于重头开始一直读完,作为一个开发人员,除了基本的语法,这本书里面提到了一些其他的常用的库,看了廖老师写的很多东西,感觉他的思路,以及写博客写书的高度,概括性,原理性都十分好,这本书读完之后,相信就可以动手写很多东西了,可以尽情的玩转Python解释器了。
另外还有一本书《Python参考手册》,这本书也十分的有用,关于Python的方方面面基本都囊括在内,可以作为一本Python字典来查询使用方法,十分好用。
掌握一门语言最好的方法就是用它,所以我觉得边学语法边刷Leetcode是掌握Python最快的方式之一。
很多只需要将Python作为脚本或者就是写一些小程序处理处理文本的话,到这一个阶段就足够了,这个阶段已经可以帮我们完成很多很多的事情了。但是如果是一个专业学习Python的,恐怕还需要努力的升级:
第二个阶段
中级,掌握自己特定领域的库,掌握pythonic写法,非常熟悉Python的特性
推荐的第一本书是《编写高质量代码–改善python程序的91个建议》,这本书大概的提了下Python工程的文件布局,更多的总结了如何写出pythonic的代码,另外,也介绍了一些常用的库。
要想深入的了解Python,有的时候看看Python的源码也是很重要的,自己通过读懂源码,来彻底的了解Python的核心机制,这里推荐《Python源码剖析——深度探索动态语言核心技术》,这本书并没有看完,只是在需要深入了解Python某个功能或者数据结构的时候看看相关章节,也觉得受益匪浅。
自己领域的书籍和资料也肯定很多,比如web开发的构架都有很多,只有了解熟悉了所有构架,在选择的时候才能衡量利弊,然后深入掌握某些构架。
这个阶段过后,可以写出pythonic代码,可以通过PEP8的检查,可以为开源社区做贡献了,可以将一个Python文件写的十分好,但是如果要用Python开发一个大型项目,还是有很多东西需要掌握的,比如项目的文档,项目的发布,下载,项目性能和案例等等。
第三个阶段
高级,从整个工程项目着眼,考虑document,distribution,性能优化等
目前只看了一本书《the hacker guide to python》,看的是英文版的,这本书对项目的布局,文档,性能,发布等做了很多详细的介绍,我觉得写的还是很不错,只不过本人还需要再读几遍。
对于大多数人来说,很难有机会从头开始一个有意义的大型工程项目,所以自己可以用Python实现一些简单的功能,简单的项目,这个灵感可以去知乎或者quora搜索,很多前辈都分享了自己的经验。
从大局入手,规划好项目的布局,设定好相应的文档说明,提供工程下载安装的方法,带几个demo,每个类,每个函数,每行代码都反复推敲,写出pythonic的程序,相信这时候Python于我们便是信手拈来了!
python在金融方面有哪些好的书 知乎
链接:
提取码:4591
华尔街学堂 python金融实务从入门到精通。最近,越来越多的研究员、基金经理甚至财务会计领域的朋友,向小编咨询:金融人需要学Python么?事实上在现在,这已经不是一个问题了。Python已成为国内很多顶级投行、基金、咨询等泛金融、商科领域的必备技能。中金公司、银河证券、南方基金、银华基金在招聘分析师岗位时,纷纷要求熟练掌握Python数据分析技能。
课程目录:
Python在金融资管领域中的应用
安装anaconda步骤
Python基础知识
Python基础金融分析应用
成为编程能手:Python知识进阶
利用Python实现金融数据收集、分析与可视化
......
深度学习 python怎么入门 知乎
自学深度学习是一个漫长而艰巨的过程。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。如果我必须重新学习Python的深度学习,我会从Andrew Trask写的Grokking deep learning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。用Python构建人工神经元
大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。相比之下,《运用深度学习》(Grokking Deep Learning)通过从零开始、一行一行地构建内容来教你进行深度学习。
《运用深度学习》
你首先要开发一个人工神经元,这是深度学习的最基本元素。查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络
有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。
随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。
代码库有点麻烦
并不是所有关于Grokking深度学习的东西都是完美的。在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。
在GitHub的Grokking深度学习库中,每一章都有丰富的jupiter Notebook文件。jupiter Notebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。
这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。
此外,Trask在Python 2.7中编写了这些代码。虽然他已经确保了代码在Python 3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“for i in range(len(array))”范式在数组上迭代)。
更广阔的人工智能图景
Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(Tywin Lannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。
关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。
如何快速学习Python?
找一本浅显易懂,例程比较好的教程,从头到尾看下去。不要看很多本,专注于一本。把里面的例程都手打一遍,搞懂为什么。我当时看的是《简明python教程》,不过这本书不是非常适合零基础初学者。零基础推荐《与孩子一起学编程》,或者看我写的教程 Crossin的编程教室 - Python入门。
去找一个实际项目练手。我当时是因为要做一个网站,不得已要学python。这种条件下的效果比你平时学一门新语言要好很多。所以最好是要有真实的项目做。可以找几个同学一起做个网站之类。注意,真实项目不一定非要是商业项目,你写一个只是自己会用的博客网站也是真实项目,关键是要核心功能完整。Crossin:Python 的练手项目有哪些值得推荐?
最好能找到一个已经会python的人。问他一点学习规划的建议(上知乎也是个途径),然后在遇到卡壳的地方找他指点。这样会事半功倍。但是,要学会搜索,学会如何更好地提问。没人愿意帮你写作业或是回答“一搜便知”的问题。
如何学习python知乎
对于Python的学习人员需要掌握以下技术。
1.网络编程。
网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的"基石"。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
2. 爬虫开发。
将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。爬虫开发项目包含跨越防爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
3.Web开发。
Web开发包含前端以及后端两大部分,前端部分,带你从"黑白"到"彩色"世界,手把手开发动态网页;后端部分,带你从10行代码开始到n万行来实现并使用自己的微型Web框架,框架讲解中涵盖了数据、组件、安全等多领域的知识,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
4. IT自动化开发。
IT运维自动化是一组将静态的设备结构转化为根据IT服务需求动态弹性响应的策略,目的就是实现减少人工干预、降低人员成本以及出错概率,真刀真枪的带你开发企业中最常用的项目,从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等多个层面接触真实的且来源于各大互联网公司真实案例,如:堡垒机、CMDB、全网监控、主机管理等。
5. 金融分析。
金融分析包含金融知识和Python相关模块的学习,手把手带你从金融小白到开发量化交易策略的大拿。学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如"双均线"、"周规则交易"、"羊驼策略"、"Dual Thrust 交易策略"等,让梦想照进现实,进入金融行业不再是个梦。
6. 人工智能+机器学习。
人工智能时代来临,率先引入深度机器学习课程。其中包含机器学习的基础概念以及常用知识,如:分类、聚类、回归、神经网络以及常用类库,并根据身边事件作为案例,一步一步经过预处理、建模、训练以及评估和参调等。人工智能是未来科技发展的新趋势,Python作为最主要的编程语言,势必有很好的发展前景,现在学习Python也是一个很好的机会。