连续质数计算python123(连续质数计算补充编程模板中代码完成如下
连续质数计算python
N要是整数,如果是浮点数,要转换成比自己大的最小的整数;
输出正好5个质数,定义一个计数器;
判断是否是质数,写个函数prime();
根据返回值是否是质数a都要+1,如果是质数,count-1;
输出时最后一个不带逗号,其他都带 扩展资料
Python由荷兰数学和计算机科学研究学会的Guido van Rossum 于1990 年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的'不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。 Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
求质数python1-100
1~100之间的质数有25个,分别是2、3、5、
7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、
83、89、97。
python求质数的算法
为大家分享了多种方法求质数python实现代码,供大家参考,具体内容如下
题目要求是求所有小于n的质数的个数。
求质数方法1:
穷举法:
根据定义循环判断该数除以比他小的每个自然数(大于1),如果有能被他整除的就不是质数:
def countPrimes1(self, n):
"""
:type n: int
:rtype: int
"""
if n=2:
return 0
else:
res=[]
for i in range(2,n):
flag=0 # 质数标志,=0表示质数
for j in range(2,i):
if i%j ==0:
flag=1
if flag==0:
res.append(i)
return len(res)
求质数方法2:
利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。所以判断一个数是否是质数,只需判断它是否能被小于它开根后的所有数整除。这样做的运算会少很多。
def countPrimes2(self, n):
if n=2:
return 0
else:
res=[]
for i in range(2, n):
flag=0
for j in range(2, int(math.sqrt(i))+1):
if i % j == 0:
flag = 1
if flag == 0:
res.append(i)
return len(res)
求质数方法3:
利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。我们可以发现只要尝试小于等于平方根的所有数即可。列举从 3 到根号x的所有数,还是有些浪费。比如要判断101是否质数,101的根号取整后是10,需要尝试的数是1到10。但是可以发现,对9的尝试是多余的。不能被3整除,必然不能被9整除……顺着这个思路走下去,其实,只要尝试小于根号x的质数即可。而这些质数,恰好前面已经算出来了,已经存在res中了。
def countPrimes3(self, n):
if n = 2:
return 0
else:
res = []
for i in range(2, n):
flag = 0
for j in res:
if i % j == 0:
flag = 1
if flag == 0:
res.append(i)
return len(res)
希望对大家有帮助