python爬取网页json数据(python爬取json文件)
python 多线程爬取网站数据利用线程池
"""
@author: wangxingchun
多线程(线程池)
下载数据
"""
import requests
import csv
from concurrent.futures import ThreadPoolExecutor as tp
#创建一个csv文件,注意创建writer对象"csv.writer()"
f = open('xinfadi.csv','w',encoding='utf8')
csvwrite = csv.writer(f)
#如果写入txt文件,不需要创建writer对象。
# f = open('xinfadidata.txt','w',encoding='utf8')
#创建一个函数,以页码做为参数
def down(n_page):
url = ''
data = {'count': 428225,'current': n_page,'limit': 20}
resp = requests.post(url,data=data)
datas =resp.json()
#通过分析数据嵌套情况,获取数据。此处可在网页开发工具json数据中查看分析。
for i in range(len(datas['list'])):
name = datas['list'][i]['prodName']
highPrice = datas['list'][i]['highPrice']
lowPrice = datas['list'][i]['lowPrice']
pubDate = datas['list'][i]['pubDate']
place = datas['list'][i]['place']
csvwrite.writerow((name,highPrice,lowPrice,pubDate,place))#writerow要求写入的是可迭代对象
# f.writelines(f'{name},{highPrice},{lowPrice},{pubDate},{place} ')
resp.close()
if __name__ == '__main__':
with tp(50) as t: #创建线程池,
for n in range(1,101): #遍历数据网页
t.submit(down,n) #提交给线程池,进行多线程下载
print(f'共{n}页数据下载完毕!')
f.close()
Python爬虫(七)数据处理方法之JSON
JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation),是轻量级的文本数据交换格式,且具有自我描述性,更易理解。
JSON看起来像python类型(列表,字典)的字符串。
在之前的文章中,我们说到了怎么用response的方法,获取到网页正确解码后的字符串。如果还有不懂的,可以先阅读 Python爬虫(三)Requests库 。接下来以有道翻译为例子,说说怎么通过网页解码后的字符串,提取到翻译结果。
再结合上述有道翻译的例子,得到字典类型的返回结果,并提取出来翻译结果。
将上述例子的dict_json换成str字符串,再写入文本中。
执行完上述的程序,会得到一个fanyi.txt的文件,其结果如下:{"type": "ZH_CN2EN", "errorCode": 0, "elapsedTime": 1, "translateResult": [[{"src": "\u4eba\u751f\u82e6\u77ed\uff0c\u6211\u7528python", "tgt": "Life is too short, I use python"}]]}。这样子的一份文档,中文部分显示的是二进制,且格式非常不利于阅读,这并不是我们想要的结果。好在json.dumps()为我们提供的两个方法,以帮助我们更好阅读文档。
1.ensure_ascii,能够让中文显示成中文;
2.indent,能够让下一行在第一行的基础上空格。
其用法如下:
如何用python爬取网站数据?
这里简单介绍一下吧,以抓取网站静态、动态2种数据为例,实验环境win10+python3.6+pycharm5.0,主要内容如下:
抓取网站静态数据(数据在网页源码中):以糗事百科网站数据为例
1.这里假设我们抓取的数据如下,主要包括用户昵称、内容、好笑数和评论数这4个字段,如下:
对应的网页源码如下,包含我们所需要的数据:
2.对应网页结构,主要代码如下,很简单,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面:
程序运行截图如下,已经成功爬取到数据:
抓取网站动态数据(数据不在网页源码中,json等文件中):以人人贷网站数据为例
1.这里假设我们爬取的是债券数据,主要包括年利率、借款标题、期限、金额和进度这5个字段信息,截图如下:
打开网页源码中,可以发现数据不在网页源码中,按F12抓包分析时,才发现在一个json文件中,如下:
2.获取到json文件的url后,我们就可以爬取对应数据了,这里使用的包与上面类似,因为是json文件,所以还用了json这个包(解析json),主要内容如下:
程序运行截图如下,已经成功抓取到数据:
至此,这里就介绍完了这2种数据的抓取,包括静态数据和动态数据。总的来说,这2个示例不难,都是入门级别的爬虫,网页结构也比较简单,最重要的还是要会进行抓包分析,对页面进行分析提取,后期熟悉后,可以借助scrapy这个框架进行数据的爬取,可以更方便一些,效率更高,当然,如果爬取的页面比较复杂,像验证码、加密等,这时候就需要认真分析了,网上也有一些教程可供参考,感兴趣的可以搜一下,希望以上分享的内容能对你有所帮助吧。