人脸识别怎么建模,人脸识别建模是什么
人脸识别的原理是什么
人脸识别的原理是用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别。人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术,其本质是图像处理。
机器或者手机进行图像处理时,需要核对面部器官的几何形状和器官之间的距离,完成上述操作之后,再和第一次录入的面部特征做对比,从而实现信息认证成功和手机解锁。
传统的人脸识别技术主要是基于可见光图像的人脸识别,但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。
经过科技发展后的人脸识别技术,基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。
黄冈云人脸如何建模
通过采集人脸信息。
黄冈云人脸APP是争对异地离退休人员建立人脸信息档案的应用软件,能够帮助社保待遇领取人员随时随地方便快捷地进行养老保险资格认证。
软件采用了先进的云计算、云存储及第三代人脸识别技术把参保人的人脸扫描结果和云端认证库照片进行比对,解决了部分人不方便直接到社保服务窗口认证的问题。
人脸识别到底是怎么个过程呢?
人脸识别流程
人脸识别系统通常包括几个过程:人脸图像采集及检测、关键点提取、人脸规整(图像处理)、人脸特征提取和人脸识别比对。
人脸图像采集。不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测。人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。
关键点提取(特征提取)。人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
人脸规整(预处理)。对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸识别比对(匹配与识别)。提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。可分为1:1、1:N、属性识别。其中1:1是将2张人脸对应的特征值向量进行比对,1:N是将1张人脸照片的特征值向量和另外N张人脸对应的特征值向量进行比对,输出相似度最高或者相似度排名前X的人脸。
人脸识别的原理
人脸识别是一种软件层面的算法,用于通过处理视频帧或数字图像来验证或识别一个人的身份,其中该人的脸是可见的。
其实机器本来并不擅长识别图像,比如这张图片在机器眼里只是一串0和1组成的数据,机器并不能理解这个图像有什么含义。所以想让机器学会认识图像,就需要我们给它编写程序算法。
当我们描述一个人的长相的时候,大多会用到类似这样的词汇,比如瓜子脸、柳叶眼、蒜头鼻、樱桃嘴。所谓长相很大程度上取决于人脑袋和五官的形状。
最早的人脸识别就是采用这样的方法。首先机器会在图像中识别出脸所在的位置,然后描绘出这张脸上的五官的轮廓,获得人脸上五官的形状和位置信息。比如两个眼睛之间的距离,鼻尖嘴角连线在水平方向上的角度等等。