城市地质建模包括,城市地质学题库

http://www.itjxue.com  2023-01-24 00:03  来源:未知  点击次数: 

城市地质三维建模的数据需求与数据组织

城市地下地质空间勘探研究不仅包括浅部的工程建设层,还应包括中部、深部地层。相对于其他地质勘察项目而言,城市地质勘察尤其是中心城区的地质勘察程度较高、资料较丰富,既有大量可精确描述地层的钻孔数据,又有大量根据钻孔和物探数据解释得到的剖面图、地层平面分布图、地质构造图等人工解释数据,这些数据表达地质空间信息各有特点,又都不同程度地存在表达三维信息的局限性和不完整性,如何充分利用各种数据的特点,通过数据耦合的方式建立城市地下地质空间三维地质模型是建设城市地下地质空间信息系统建设的关键。

(一)基础地理空间数据

这类数据主要包括地理底图(地形图)和遥感影像,地理底图主要用于钻孔点位、三维模型和基础地理空间信息的叠加定位,遥感影像则作为地表纹理数据叠加在地形模型上。地理底图类数据要求为GIS矢量数据格式(如MAPGIS *.wt,*.wl,*.wp文件),这类数据一般按照水平分幅、垂向分图层的方式进行组织,如图3—1所示。遥感影像数据一般为JPG、TIFF格式,需要包含用于校正的控制点信息。

图3—1 海量底图逻辑结构图

(二)钻孔类数据

城市三维地质建模中最常见的一类建模数据就是钻孔数据。工程钻探法是获取地下三维空间信息的重要方法,通过钻孔可以直接获取详细的岩土层分布状况,取得的岩芯(土样)还可以进行相应的室内试验获得其物理力学指标。钻孔资料因其直观、准确、详细的特性在三维地层模拟中具有至关重要的意义,根据钻孔数据构建三维地层实体模型一直是国内外三维地质建模领域研究的热点,并取得了一定的研究成果。

钻孔基本资料表,钻孔土层描述表,整体(标准)地层描述表是基于钻孔进行三维地质建模所必需的几个核心表,三个表所含有的建模必要字段、名称可以不与下述表的字段名称相同,但所代表的意义一定要相同。

1.钻孔的基本资料表(表3—6)

表3—6 钻孔基本资料表

说明:①日期型数据要统一格式;②孔口标高X,Y最好为国家坐标系;③其中1,6,9,10,11 项为三维建模必需项。

2.钻孔的土层描述表(表3—7)

表3—7 钻孔土层描述表

说明:①分层序号为同一钻孔内不同土层的顺序号;②其中1,2,3,4,7项为三维建模必需项。

3.全局地层描述表(表3—8)

表3—8 全局地层描述表

说明:①1,2,11字段为三维建模必需项;②说明字段“地层名称”和其他表中的字段“土质类型”是一致的。

全局地层描述表实际上就是一个“基本地层层序表”,其形成规则是:按照地层沉积顺序和形成年代,结合岩土体物理力学指标数据,自上而下按照由新至老的顺序进行排列。在形成此基本层序表的过程中,可能会出现地层顺序无法排列的情况,这需要结合工程勘察人员的经验,按照地层叠覆律进行确定。简单地说,地层层序要求建模区域内所有的地层都被自上而下的排序,并且在各个钻孔中的顺序都不变。

事实上,地层层序并不见得对所有的钻孔都合适。由于地层尖灭,透镜体等存在于局部区域,特定的地层可能只在一部分区域连续,而在其他地方被另外的地层切割。采用“全局地层层序”的概念能够容易的表达这些复杂的地质现象。

下面是关于“全局地层层序”必须满足的一些基本规则:

(1)如果在一个钻孔中,地层A在地层B的上面,则在“全局地层层序”中,A在B的上面。

(2)如果在钻孔1中地层A在地层B的上面,而在钻孔2中地层B又在地层A的上面,则:

①在地层层序中至少有3个地层;

②必须使用其他的钻孔来确定地层层序。

(3)“全局地层层序”中地层的数目不少于:

各个钻孔的地层数目的最大值+在该钻孔(即具有最大钻孔数目的钻孔)中不存在的所有地层的数目。

4.其他数据表

包括土试数据表等不是三维地质(结构)建模所必须,在此省略。

(三)平面地质图类数据

1.一般格式

要充分利用平面地质图所蕴涵的地质构造信息来建立三维地质结构模型,需要首先将现有的纸质图件数字化为电子图件或者将原有的电子图件转化为建模系统能够识别的电子图件格式,如下:

(1)平面地质图采用GIS图形数据格式(如MAPGIS *.wt,*.wl,*.wp文件)进行存储,可利用GIS图形编辑模块进行查看、编辑、修改等操作。

(2)一个地质平面图可用一个工程文件(如MAPGIS *.mpj)来存储。这个工程文件须记录完整的平面图信息,如坐标系类型、投影参数、比例尺等。

(3)每一个工程文件(如MAPGIS*.mpj)由以下文件组成(其中第一个是必须有的):

①区文件记录原地质平面图中的地质单元分区信息。主要属性字段有:ID,面积,周长,区域类型,地层编号,备注。

②弧段属性结构,记录地质单元分区中的线属性。主要属性字段有:ID,长度,弧段类型,断层编号,盘类型等。

③*.wt:图上必要的标注信息。

④另外,如果有其他内容需要记录下来,可另在工程文件中附加其他点、线、面文件。

2.等值线格式

有些平面地质图含有等高线信息(如地层埋深等值线),这些等值线对建模有同样的重要意义,需要将等值线信息进行标准化,记录下等高线类型、数值等信息。

等值线数据可采用GIS工程文件格式(如MAPGIS *.Mpj)组织,也可以采用单独的点、线文件格式(如MAPGIS *.wt、*.wl)组织。但无论采用何种组织方式其包含的三维地质建模基本信息如下表所示:

(1)顶、底板埋深等值线文件(结构建模)格式。地层顶、底板埋深等值线文件属性结构如表3—9所示。

表3—9 地层顶、底板埋深等值线文件属性结构

(2)等厚度线文件(结构建模)。地层等厚度线文件属性结构如表3—10所示。

表3—10 地层等厚度线文件属性结构

(3)高程点文件(结构建模)。高程点文件属性结构如表3—11所示。

表3—11 高程点文件属性结构

(四)地质剖面类数据

每个地质剖面采用一个GIS工程文件(如MAPGIS *.mpj)来存储,地质剖面数据采用GIS图形数据格式(如MAPGIS*.wt,*.wl,*.wp)分图层进行存储,可利用基于GIS图形编辑功能开发的“地质剖面编辑器”查看、编辑、修改剖面图。

在地质剖面输入与标准化处理时,采用以剖面起始点、终止点、拐点为地质剖面空间形态表示核心数据,轮廓区域作为三维地质结构建模核心数据。对于每个剖面工程文件,主要记录以下图形和属性信息:

1.定位点文件(必备)

剖面定位点文件要在剖面上标识出剖面起点(X0,Y0)、终点(Xn-1,Yn-1)剖面所经过的中间点(Xi,Yi)。由于剖面图在垂直方向上没有转折,另外用户还要输入两个以上高程控制点Hj和Hj+1,这样系统就可以自动计算剖面的水平、垂直比例尺及剖面实际空间位置,如图3—2所示。

图3—2 剖面定位点标识示意图

定位点属性结构如表3—12所示。

表3—12 定位点属性结构

2.地层区文件(结构建模)

地层区文件中既要定义每个区的属性结构还要定义构成区的弧段的属性结构(表3—13,表3—14)。

表3—13 地层区文件区属性结构

表3—14 地层区文件弧段属性结构

3.地层线文件(结构建模)

地层线文件属性结构同地层区弧段属性结构。

4.钻孔线文件(钻孔建模必备)

钻孔线文件属性结构如表3—15所示。

表3—15 钻孔线文件属性结构

5.断层线文件(断层建模必备)

断层线文件是进行基于剖面的断层建模所必需的数据,其属性结构如表3—16所示。

表3—16 钻孔线文件属性结构

(五)地质空间数据的规范化和归一化

城市地质空间基础数据,数据层面多,来源不同,采集于不同时期,数据类型亦不同(地理底图、遥感影像、地质图、钻孔等),即是都是地图数据,其投影方式、坐标体系、地图单位等参数也不一定完全一致,进行三维地质建模前除按照上述数据需求准备数据外,按照一定的标准对系统数据进行规范化处理是非常有必要的。所谓数据的规范化处理是指按照国家标准、行业标准、地方标准或系统建设标准对数字化后的地质资料分类进行数据的预处理、概括处理等。

1.数据预处理

坐标配准:将各层次数据的空间坐标体系都转换成统一的坐标系(如城市坐标),地图单位也要统一(如以米为单位);投影规一化:用GIS的投影转换功能把各数据层转换成统一的投影方式;遥感影像矢量化:遥感数据必须经过矢量处理、加注属性、建立空间拓扑关系后使用;确定统一边界:对研究区域确定统一的标准边界,用叠加和切边操作使各数据层的边界完全一致。

2.三维建模数据的概化处理

在所有的数据规范化处理工作中最关键的也是最具挑战性的工作是地层、钻孔、剖面、构造地质图等三维地质资料的概化解释工作。也就是要建立三维地质模型,再通过必要的渲染和可视化表达分析手段模拟城市地下地质空间的状况。城市三维地质建模主要使用两类数据:一类是反映地表变化情况的基础地理数据,如地理底图、DEM数据、遥感影像数据,这类数据对三维地质模型只起空间定位、地形约束、修饰作用;另一类是映地下地质结构变化情况的地质勘探解释数据,如钻孔、剖面、地质图等,进行三维地质建模时需要使用这类数据精确确定地层、断层等点状、线状、面状及体状的地质构造信息,这类数据是进行三维地质建模的关键数据。由于三维地质模型的确定性和拓扑严格性,相应地也要求这类数据必须具有严格的、确定的几何和拓扑一致性。

考虑到项目搜集到的钻孔数据多来自于不同时期、不同项目的成果,由于当时勘探目标、所依赖的标准不同,甚至因不同人的认识不一样,导致对同一区域或相近区域地质现象解释的详细程度和划分结果不一样,甚至差别非常大或是自相矛盾,这对于强调全市范围内应用的城市地质调查成果表达和三维地质建模来说是无法接受的。基于不同勘探资料解释得到的剖面图、地质图也存在同样的问题,且由于编制这些图的原始目的主要是进行成果的表现,制图人员多是从制图的角度考虑如何修饰、如何好看,并没有过多考虑图面上地质元素的拓扑、几何的严格和一致性,而这些都是进行三维地质建模所必需的。

鉴于上述原因,系统建设过程中需要结合三维地质建模对数据精度和一致性的要求,按一定的规则对原始钻孔、剖面、地质图进行概化处理,使得这些反映垂向地质结构的数据逐步变得有序化,为进一步自动或半自动生成三维地质模型奠定基础。

上述工作主要借助现成的GIS工具(如MAPGIS等)软件或其他工具软件完成结合专业人员知识经验完成。

地质体三维建模方法

在分析三维空间建模方面的国内外大量研究文献的基础上,目前主要有四种类型的建模方法:基于体的建模方法、基于面的建模方法、混合建模方法(表1-1)以及泛权建模方法。

表1-1 3D空间建模方法分类

1.基于体的建模方法

体模型基于3D空间的体元分割和真3D实体表达,体元的属性可以独立描述和存储,因而可以进行3D空间操作和分析。体元模型可以按体元的面数分为四面体(Tetrahedral)、六面体(Hexahedral)、棱柱体(Prismatic)和多面体(Polyhedral)等类型,也可以根据体元的规整性分为规则体元和不规则体元两个大类。建模方法如下:

(1)规则块体(Regular Block)建模;

(2)结构实体几何(CSG)建模;

(3)3D体素(Voxel)建模;

(4)八叉树(Octree)建模;

(5)针体(Needle)建模;

(6)四面体格网(TEN)建模;

(7)金字塔(Pyramid)模型;

(8)三棱柱(Tri-Prism,TP)建模;

(9)地质细胞(Geocellular)模型;

(10)不规则块体(Irregular Block)建模;

(11)实体(Solid)建模;

(12)3D Voronoi图模型;

(13)广义三棱柱(GTP)建模。

2.基于面的建模方法

基于面模型的建模方法侧重于3D空间实体的表面表示,如地形表面、地质层面、构筑物(建筑物)及地下工程的轮廓与空间框架。所模拟的表面可能是封闭的,也可能是非封闭的。基于采样点的TIN模型和基于数据内插的Grid模型通常用于非封闭表面模拟;而B-Rep模型和Wire Frame模型通常用于封闭表面或外部轮廓模拟。Section模型、Section-TIN混合模型及多层DEM模型通常用于地质建模。通过表面表示形成3D空间目标轮廓,其优点是便于显示和数据更新,不足之处由于缺少3D几何描述和内部属性记录而难以进行3D空间查询与分析。建模方法如下:

(1)TIN和Grid模型;

(2)边界表示(B-Rep)模型;

(3)线框(Wire Frame)模型;

(4)断面(Section)模型;

(5)断面-三角网混合模型;

(6)多层DEM建模。

3.混合建模方法

基于面模型的建模方法侧重于3D空间实体的表面表示,如地形表面、地质层面等,通过表面表示形成3D目标的空间轮廓,其优点是便于显示和数据更新,不足之处是难以进行空间分析。基于体模型的建模方法侧重于3D空间实体的边界与内部的整体表示,如地层、矿体、水体、建筑物等,通过对体的描述实现3D目标的空间表示,优点是易于进行空间操作和分析,但存储空间大,计算速度慢。混合模型的目的则是综合面模型和体模型的优点,以及综合规则体元与不规则体元的优点,取长补短。主要包括如下混合建模方法:

(1)TIN-CSG混合建模;

(2)TIN-Octree混合建模;

(3)Wire Frame-Block混合建模;

(4)Octree-TEN混合建模;

(5)GTP-TEN混合建模。

4.泛权建模方法

陈树铭认为地质三维领域中,地矿、石油的三维分析相对来说是比较简单的,相比之下工程地质、水文地质等的三维分析更复杂,比如说在地矿、石油领域应用克里格方法基本就可以分析,但是对于工程地质、水文地质分析来说,克里格方法基本是不可行的。他认为目前主要有三类地质三维重构算法,即剖面成面法、直接点面法,以及拓扑分析方法。在综合应用概率统计、模糊、神经网络、插值、积分等理论的基础上,构造了一种新算法(他称之为“泛权”算法),其核心思想就是能对任意M维的连续、非连续边界进行重构分析,并同时能耦合地模拟各种复杂背景因素的影响。

(1)剖面成面法。剖面成面法的基本思路是,在生成大量的地质剖面的基础上,再应用曲面构造法(趋势面法、DEM生成技术)来生成各个层面,进而来表达三维体。比如国外的三维地质分析软件GEOCOM就是采取此种思路的一个典型。具体的解决步骤如下:

①收集、整理原始地质资料,并进行柱状和综合分层;

②建立地质空间多参数数据库;

③根据以上资料,应用人工交互式的地质剖面生成软件平台,加上专家的人工干预生成各种各样的空间地质剖面;

④分别根据各已计算剖面的地层分布结果,加上专家的干预、分析参数的控制来生成各个地质曲面;

⑤建立地层空间曲面构架数据库;

⑥应用地质三维展示平台,基于地层空间曲面构架数据库、地质空间多参数数据库,来进行地质三维展示,三维切割分析、方量计算等功能。

(2)直接点面法。直接点面法的基本思路是,直接将原始的散状数据进行有效的分层,直接根据各个层面的标高,应用曲面构造法(趋势面法、DEM生成技术)来生成各个层面。比如国外的三维地质分析软件ROCKWARE就是采取此种思路的一个典型。其解决步骤基本同于剖面成面法,只是没有下文第3)步,但是地层曲面生成技术相对前者来说要更难一些。

(3)拓扑分析法。拓扑分析法的基本思路就是,基于各个层面的离散点,通过分析这些点的空间拓扑关系,构造地质体。目前来说进行拓扑分析基本采用六面体、四面体模型,或者是Delaunay四面体模型等。其与剖面成面法、直接点面法,在本质上没有什么区别,还是从离散的点出发去构造地质层面。

三维地质建模

一、内容概述

随着世界各国对资源需求日益上升以及对地质环境问题的日益重视,各国研究机构都将提高资源保障能力、缓解环境压力的目光逐步转向了地球深部,这就需要对地下空间有更详细、更好地了解。正是这种社会需求的不断增长,以及地理信息系统(GIS)、数字制图、数据存储和分析、可视化技术上显著的技术进步,直接促使了从传统的二维向三维地质填图(也称为三维地质建模)的过渡成为必然。

三维地质图是传统的二维地质图向三维的延伸。这些地图可以描绘三维空间内地下层叠地层的深度、厚度和物质性质。输出的结果是通过地质解译,以及严格应用原始数据、地质知识和统计方法而创建的完全属性化和数字化的三维模型。

二维和三维输出结果都采用了相似的地质构造单元分类,并针对特定用途和相关机构的需要,按照一定的比例尺和分辨率加以呈现。三维填图完成的三维地质模型可以为需要解决地球科学问题的客户提供信息,因为:①完成的三维地质图,可以以可理解的格式、用多种地图视图解释和描绘复杂的地质情况;②当有新信息可用时,可以制作和更新各种衍生或解译图;③针对地球资源信息的特定需求,根据客户需要进行发布和定制(Berg et al.,2011)。

二、应用范围及应用实例

目前,美国地质调查局的科学家使用三维/四维工具来进行以下工作:①可视化和解释地质信息;②验证数据;③验证他们的解译和模型。三维地质填图的例子包括对面向资源评价的地下空间描述,如美国中部的含水层描述,以及作为过程模型的输入参数,如美国西部的地震。同时,USGS希望通过开发新的三维/四维工具和框架,以及通过对现有技术的提高和更有效的利用,扩大其三维/四维处理能力来监测、解译和分发自然资源信息。

加拿大地质调查局已经将三维地质填图融入了各项工作。然而,地下水研究对于三维地质填图的需求还没有从传统的地质调查上完全转变过来。盆地分析的概念是加拿大地质调查局开展三维地质填图的基础。在此框架下,工作重点放在了数据收集和了解盆地的地质历史。盆地分析在地下水研究项目中已经作为一种常见的三维研究方法。后续在GIS软件中的数据处理、插值、可视化仍然酌情根据地理和地质的复杂性、研究目标和需求而定。

英国地质调查局的三维地质模型名为LithoFrame。它代表了地质图从二维扩展到三维(表1)。LithoFrame概念的核心是不同分辨率的模型彼此对应,形成从一般的全国模型到详细的现场模型的无缝过渡。

表1 LithoFrame分辨率的主要特点

注:LithoFrame比例尺:1M为1∶100万;250为1∶25万;50为1∶5万;10为1∶1万。

法国地质调查局的三维建模主要涉及3个领域:公共服务、国际合作项目以及与许多合作伙伴和客户合作开展的科研活动:

1)公共服务:欧盟、法语国家、地区政府和城镇机关;

2)国际项目:私营公司和外国政府;

3)研究:实验室和合作大学。

法国地质调查局的三维建模活动的主要应用领域是地质调查、含水层的保护和管理、城市地质、地震风险评价、土木工程、碳捕获和存储研究、地热潜力、矿产资源开采和采后评价。

国外地质调查机构用于创建三维地质图和模型最常用的软件套件包括ArcGIS、Gocad、EarthVision、三维GeoModeller,GSI3 D、Multilayer-GDM和Isatis。这些软件中,GSI3 D、三维GeoModeller和Multilayer-GDM由地质调查机构自行开发,并根据其机构对地质填图和建模的需求进行定制。许多其他软件包也用在地质调查机构的部分建模工作流程中,其中包括GIS、统计学分析、地震深度转换、可视化和属性建模的软件。

三、资料来源

Berg R C,Mathers S J et al.2011.Synopsis of Current Three Dimensional Geological Mapping and Modeling in Geological Survey Organizations.Ilinois State Geological Survey Circular,104

(责任编辑:IT教学网)

更多