微积分入门基础公式(微积分入门基本公式例题)

http://www.itjxue.com  2023-03-16 18:24  来源:未知  点击次数: 

微积分基本公式16个有哪些?

微积分基本公式16个:

扩展资料:

1、微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

2、积分的种类主要有:定积分、不定积分、黎曼积分、达布积分、勒贝格积分、黎曼-斯蒂尔杰斯积分、数值积分等。

参考资料:微积分_百度百科积分公式_百度百科

微积分基本公式有哪些?

微积分基本公式16个为:

(1)d( C ) = 0 (C为常数)

(2)d( xμ ) = μxμ-1dx

(3)d( ax ) = ax㏑adx

(4)d( ex ) = exdx

(5)d( ㏒ax) = 1/(x*㏑a)dx

(6)d( ㏑x ) = 1/xdx

(7)d( sin(x)) = cos(x)dx

(8)d( cos(x)) = -sin(x)dx

(9)d( tan(x)) = sec2(x)dx

(10)d( cot(x)) = -csc2(x)dx

(11)d( sec(x)) = sec(x)*tan(x)dx

(12)d( csc(x)) = -csc(x)*cot(x)dx

设f(x), g(x)都可导,则:

(1)d(f(x) + g(x)) = df(x) + dg(x)

(2)d(f(x) - g(x)) = df(x) - dg(x)

(3)d(f(x) * g(x)) = g(x)*df(x) + f(x)*dg(x)

(4)d(f(x) / g(x)) = [g(x)*df(x) - f(x)*dg(x)] / g2(x)

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

微积分入门基本公式是什么?

微积分基本公式:

1、第一基本定理

2、第二基本定理

对微积分基本定理比较直观的理解是:把函数在一段区间的“无穷小变化”全部“加起来”,会等于该函数的净变化,这里“无穷小变化”就是微分,“加起来”就是积分,净变化就是该函数在区间两端点的差。

扩展资料:

推广

不需要假设?f?在整个区间是连续的。这样定理的第一部分便说明:如果?f?是区间[a,?b]内的任何一个勒贝格可积的函数,x0是[a,?b]内的一个数,使得?f?在?x0连续,则

在x?=?x0是可导的,且F'(x0) =?f(x0)。我们可以把f的条件进一步降低,假设它仅仅是可积的。这种情况下,我们便得出结论:F几乎处处可导,且F'(x)几乎处处等于f(x)。

这有时称为勒贝格微分定理。定理的第一部分对于任何具有原函数F的勒贝格可积函数f都是正确的(不是所有可积的函数都有原函数)。泰勒定理中把误差项表示成一个积分的形式,可以视为微积分基本定理的一个推广。

微积分入门基本公式有哪些?

微积分的基本公式共有四大公式:

1、牛顿-莱布尼茨公式,又称为微积分基本公式;

2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分;

3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分;

4、斯托克斯公式,与旋度有关。

微积分的基本运算公式:

1、∫x^αdx=x^(α+1)/(α+1)+C (α≠-1)

2、∫1/x dx=ln|x|+C

3、∫a^x dx=a^x/lna+C

4、∫e^x dx=e^x+C

5、∫cosx dx=sinx+C

6、∫sinx dx=-cosx+C

7、∫(secx)^2 dx=tanx+C

8、∫(cscx)^2 dx=-cotx+C

9、∫secxtanx dx=secx+C

10、∫cscxcotx dx=-cscx+C

11、∫1/(1-x^2)^0.5 dx=arcsinx+C

微积分基本公式是?

微积分的基本公式共有四大公式:

1、牛顿-莱布尼茨公式,又称为微积分基本公式;

2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分;

3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分;

4、斯托克斯公式,与旋度有关。

扩展资料

在多元微积分学中,牛顿-莱布尼茨公式的对照物是德雷克公式、散度定理、以及经典的斯托克斯公式。无论在观念上或者在技术层次上,他们都是牛顿-莱布尼茨公式的推广。随着数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。

有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。在微分流形上,外微分式扮演着重要的角色。于是,外微分式的积分和微分流形上的斯托克斯公式产生了。而经典的德雷克公式、散度定理、以及经典的斯托克斯公式也得到了统一。

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。

微积分的基本公式有哪些?

(1)微积分的基本公式共有四大公式:

1.牛顿-莱布尼茨公式,又称为微积分基本公式

2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分

3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分

4.斯托克斯公式,与旋度有关

(2)微积分常用公式:

Dx sin x=cos x

cos x = -sin x

tan x = sec2 x

cot x = -csc2 x

sec x = sec x tan x

csc x = -csc x cot x

sin x dx = -cos x + C

cos x dx = sin x + C

tan x dx = ln |sec x | + C

cot x dx = ln |sin x | + C

sec x dx = ln |sec x + tan x | + C

csc x dx = ln |csc x - cot x | + C

sin-1(-x) = -sin-1 x

cos-1(-x) = - cos-1 x

tan-1(-x) = -tan-1 x

cot-1(-x) = - cot-1 x

sec-1(-x) = - sec-1 x

csc-1(-x) = - csc-1 x

Dx sin-1 ()=

cos-1 ()=

tan-1 ()=

cot-1 ()=

sec-1 ()=

csc-1 (x/a)=

sin-1 x dx = x sin-1 x++C

cos-1 x dx = x cos-1 x-+C

tan-1 x dx = x tan-1 x- ln (1+x2)+C

cot-1 x dx = x cot-1 x+ ln (1+x2)+C

sec-1 x dx = x sec-1 x- ln |x+|+C

csc-1 x dx = x csc-1 x+ ln |x+|+C

sinh-1 ()= ln (x+) xR

cosh-1 ()=ln (x+) x≥1

tanh-1 ()=ln () |x| 1

sech-1()=ln(+)0≤x≤1

csch-1 ()=ln(+) |x| 0

Dx sinh x = cosh x

cosh x = sinh x

tanh x = sech2 x

coth x = -csch2 x

sech x = -sech x tanh x

csch x = -csch x coth x

sinh x dx = cosh x + C

cosh x dx = sinh x + C

tanh x dx = ln | cosh x |+ C

coth x dx = ln | sinh x | + C

sech x dx = -2tan-1 (e-x) + C

csch x dx = 2 ln || + C

duv = udv + vdu

duv = uv = udv + vdu

→ udv = uv - vdu

cos2θ-sin2θ=cos2θ

cos2θ+ sin2θ=1

cosh2θ-sinh2θ=1

cosh2θ+sinh2θ=cosh2θ

Dx sinh-1()=

cosh-1()=

tanh-1()=

coth-1()=

sech-1()=

csch-1(x/a)=

sinh-1 x dx = x sinh-1 x-+ C

cosh-1 x dx = x cosh-1 x-+ C

tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C

coth-1 x dx = x coth-1 x- ln | 1-x2|+ C

sech-1 x dx = x sech-1 x- sin-1 x + C

csch-1 x dx = x csch-1 x+ sinh-1 x + C

sin 3θ=3sinθ-4sin3θ

cos3θ=4cos3θ-3cosθ

→sin3θ= (3sinθ-sin3θ)

→cos3θ= (3cosθ+cos3θ)

sin x = cos x =

sinh x = cosh x =

正弦定理:= ==2R

余弦定理:a2=b2+c2-2bc cosα

b2=a2+c2-2ac cosβ

c2=a2+b2-2ab cosγ

sin (α±β)=sin α cos β ± cos α sin β

cos (α±β)=cos α cos β sin α sin β

2 sin α cos β = sin (α+β) + sin (α-β)

2 cos α sin β = sin (α+β) - sin (α-β)

2 cos α cos β = cos (α-β) + cos (α+β)

2 sin α sin β = cos (α-β) - cos (α+β)

sin α + sin β = 2 sin (α+β) cos (α-β)

sin α - sin β = 2 cos (α+β) sin (α-β)

cos α + cos β = 2 cos (α+β) cos (α-β)

cos α - cos β = -2 sin (α+β) sin (α-β)

tan (α±β)=,cot (α±β)=

ex=1+x+++…++ …

sin x = x-+-+…++ …

cos x = 1-+-+++

ln (1+x) = x-+-+++

tan-1 x = x-+-+++

(1+x)r =1+rx+x2+x3+ -1= n

= n (n+1)

= n (n+1)(2n+1)

= [ n (n+1)]2

Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt

β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx

(责任编辑:IT教学网)

更多

推荐安全技术文章