Python里面的画图速度怎么设置怎么设置(python绘制速度)
python的turtle如何设置绘图的速度?
turtle.speed(0)
“fastest”: 0
“fast”: 10
“normal”: 6
“slow”: 3
“slowest”: 1
turtle.Turtle().screen.delay(0)
就没有延迟了
python绘图中的四个绘图技巧
pre{overflow-x: auto}
技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import?seaborn?as?sns?#?v0.11.2?? import?matplotlib.pyplot?as?plt?#?v3.4.2?? sns.set(style='darkgrid',?context='talk',?palette='rainbow')df?=?sns.load\_dataset('tips')?? df.head()
技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig,?ax?=?plt.subplots(nrows=1,?ncols=2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? sns.boxplot(data=df,?x='tip',?ax=ax[1]);
在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
? 例如,我们可以像这样为每个子图添加标题:
fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? ax[0].set\_title("Histogram")?? sns.boxplot(data=df,?x='tip',?ax=ax[1])?? ax[1].set\_title("Boxplot");
在循环中将所有数值变量用同一组图表示:
numerical?=?df.select\_dtypes('number').columnsfor?col?in?numerical:?? ?fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? ?sns.histplot(data=df,?x=col,?ax=ax[0])?? ?sns.boxplot(data=df,?x=col,?ax=ax[1]); 技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s
? 语法与之前略有不同:
plt.figure(figsize=(10,4))?? ax1?=?plt.subplot(1,2,1)?? sns.histplot(data=df,?x='tip',?ax=ax1)?? ax2?=?plt.subplot(1,2,2)?? sns.boxplot(data=df,?x='tip',?ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)
我们同样能定制子图形。例如加个 title
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)??? ?ax.set\_title(f"Boxplot?of?{col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical?=?df.select\_dtypes('category').columnsplt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)
顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.suptitle('Category?counts?for?all?categorical?variables')?? plt.tight\_layout()
此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!
python画笔速度怎么调快?
速度字符串与速度值的对应关系如下: “fastest”: 0 最快 “fast”: 10 快 ... 第2行就是python给我们准备的画笔工具箱,里面有各种各样的工具;使用前...