简述python数据分析流程的总结(python数据分析的基本操作有哪些)

http://www.itjxue.com  2023-03-28 03:50  来源:未知  点击次数: 

自学3年Python的我成了数据分析师,总结成一张思维导图

大家好,我是一名普通毕业生,现就职于某互联网公司。之前很多同学问我“ 为什么自学3年Python,最后却成为了数据分析师 ?”

首先肯定是数据分析师的前景和薪资条件,打动了我

下面是我的学习之路,附带一些必备学习的资料,可以 免费领取 ,相信感兴趣的你看完也可以找到自己的方向。

众所周知:Python是当今最火的编程语言之一,各大招聘网站上都会要求求职者会这门语言,并且它很容易上手,业务面宽泛,像Web网页工程师、网络爬虫工程师、自动化运维、自动化测试、 游戏 开发、数据分析、AI等等。

我们首先明确一个大的方向,知道自己以后要做什么。因为我是统计学专业,所以我会选择从事数据分析行业,那么 用Python做数据分析成了一个最佳选择 。

要想使用Python做数据分析,首先就应该知道“ 数据分析的流程是怎样的? ”

我这次特地总结了一张 思维导图 给大家,点击放大看更清楚哦。

(点击查看高清大图)

基于此,我这里将我以前学习过程中用过的电子书(技能类、统计类、业务类),还有相关视频免费分享给大家,省去了你们挑选视频的时间,也希望能够对你们的学习有所帮助。

PS:我总结的资料有点多哦,差不多有4G,大家一定要给你的百度云盘空出位置来哦!

如果遇到一些环境配置,还有一些错误异常等bug,资料就显得不太够用,这时就需要找到老师,给我们特别讲解。

或者是想 快速学习 数据分析领域知识,不妨先找一找 直播课 看看, 了解当下最贴合实际的学习思路,确定自己的方向。

Day1 20:00量化交易入门:

用Python做股票指标分析和买卖时机选择

场景工具:Python工具分解RSI指标流程处理: 业务场景分析建模和可视化学习成果:使用RSI指标模型做买卖点搜索、交易回溯实战案例:分析A股数据模型,制定投资策略

Day2 20:00职场晋升必备:

制作酷炫报表,4步带你学习数据可视化

场景工具:用Tableau学习如何管理数据流程处理: 利用业务拆解找到数据指标、进行数据可视化学习成果:高效的对数据驱动型业务作出精准决策实战案例:利用可视化工具构建 旅游 客流量趋势地图

Day3 20:00量化交易进阶:

0基础用Python搭建量化分析平台

场景工具:利用pandas工具分解KDJ指标构成流程处理: 交易数据爬取,业务场景分析建模和可视化分析结果:用KDJ指标模型对比特币行情买卖点搜索交易回溯实战项目:掌握根据数据指数和分析工具寻找虚拟货币买卖原理

他们 每周都会定期分享 一些 干货 供大家学习参考,对学习很有帮助。

(深度学习DeepLearning.ai实验室认证)

微软/甲骨文/Cloudera等公司颁发的数据分析证书)

4步学会数据可视化,办公效率提高三倍

(更多精彩内容 等你解锁)

怎样用 Python 进行数据分析?

做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法

那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等

所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,

之后再学怎么分析。

python如何做数据分析

用Python做数据分析,大致流程如下:

1、数据获取

可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sql server、mysql、orcale等主流数据库的接口包,比如pymssql、pymysql、cx_Oracle等。

2、数据存储

企业当中的数据存储,通过通过数据库如Mysql来存储与管理,对于非结构化数据的存储可以使用MongoDB等。对于使用Python进行网络抓取的数据,我们也可以使用pymysql包快速地将其存储到Mysql中去。

3、数据预处理/数据清洗

大多数情况下,原始数据是存在格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。Python做数据清洗,可以使用Numpy和Pandas这两个工具库。

4、数据建模与分析

常见的数据挖掘模型有:分类、聚类、回归等,这些常见的算法模型,Python也有Scikit-learn和Tensorflow工具库来支持。

5、数据可视化分析

在数据可视化方面,Python有Matplotlib、Seaborn、Pyecharts等工具库可用。

python数据分析的基本步骤

一、环境搭建

数据分析最常见的环境是Anaconda+Jupyter notebook

二、导入包

2.1数据处理包导入

2.2画图包导入

2.3日期处理包导入

2.4jupyter notebook绘图设置

三、读取数据

四、数据预览

1.数据集大小

2.查看随便几行或前几行或后几行

3.查看数据类型

4.查看数据的数量、无重复值、平均值、最小值、最大值等

5.查看字段名、类型、空值数为多少

五、数据处理

把需要的字段挑选出来。

数据类型转换

日期段数据处理。

(责任编辑:IT教学网)

更多

推荐安全产品文章