Python怎么画图表(python绘制)

http://www.itjxue.com  2023-04-11 06:43  来源:未知  点击次数: 

用Python画图

今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?

搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图

第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。

??它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:

turtle.forward(200)

turtle.left(170)

第一个命令是移动200个单位并画出来轨迹

第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度

然后呢? 循环重复就画出来这个图了

好玩吧。

有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。

Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。

Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。

使用起来也挺简单,

首先import matplotlib.pyplot as plt?导入画图的图。

然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。

接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。

现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。

我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?

假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:

这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令

plt.plot(df['time'], df['ini'])

plt.show()

就能得到如下图:

自己画的是不是很香,哈哈!

然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛

plt.plot(df['time'], df['Ahr999'])

图形如下:

但是,Ahr999指数怎么就一条线不动啊,?原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。

继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制

fig = plt.figure() # 多图

ax1 = fig.add_subplot(111)

ax1.plot(df['time'], df['ini'], label="BTC price")? #?绘制第一个图比特币价格

ax1.set_ylabel('BTC price') #?加上标签

# 第二个直接对称就行了

ax2 = ax1.twinx()#?在右边增加一个Y轴

ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")??#?绘制第二个图Ahr999指数,红色

ax2.set_ylim([0, 50])# 设定第二个Y轴范围

ax2.set_ylabel('ahr999')

plt.grid(color="k", linestyle=":")# 网格

fig.legend(loc="center")#图例

plt.show()

跑起来看看效果,虽然丑了点,但终于跑通了。

这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。

有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。

python绘图中四个绘图技巧

pre{overflow-x: auto}

技巧1: plt.subplots()

技巧2: plt.subplot()

技巧3: plt.tight_layout()

技巧4: plt.suptitle()

数据集:

让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:

import?seaborn?as?sns?#?v0.11.2?? import?matplotlib.pyplot?as?plt?#?v3.4.2?? sns.set(style='darkgrid',?context='talk',?palette='rainbow')df?=?sns.load\_dataset('tips')?? df.head()

技巧1: plt.subplots()

绘制多个子图的一种简单方法是使用 plt.subplots() 。

这是绘制 2 个并排子图的示例语法:

fig,?ax?=?plt.subplots(nrows=1,?ncols=2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? sns.boxplot(data=df,?x='tip',?ax=ax[1]);

在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。

? 例如,我们可以像这样为每个子图添加标题:

fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? ax[0].set\_title("Histogram")?? sns.boxplot(data=df,?x='tip',?ax=ax[1])?? ax[1].set\_title("Boxplot");

在循环中将所有数值变量用同一组图表示:

numerical?=?df.select\_dtypes('number').columnsfor?col?in?numerical:?? ?fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? ?sns.histplot(data=df,?x=col,?ax=ax[0])?? ?sns.boxplot(data=df,?x=col,?ax=ax[1]); 技巧2: plt.subplot()

另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s

? 语法与之前略有不同:

plt.figure(figsize=(10,4))?? ax1?=?plt.subplot(1,2,1)?? sns.histplot(data=df,?x='tip',?ax=ax1)?? ax2?=?plt.subplot(1,2,2)?? sns.boxplot(data=df,?x='tip',?ax=ax2);

当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:

plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)

我们同样能定制子图形。例如加个 title

plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)??? ?ax.set\_title(f"Boxplot?of?{col}")

通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。

技巧3: plt.tight_layout()

在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,

如下所示:

categorical?=?df.select\_dtypes('category').columnsplt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)

顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便

plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.tight\_layout()

专业 看起来更好了。

技巧4: plt.suptitle()

真个图形添加标题:

plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.suptitle('Category?counts?for?all?categorical?variables')?? plt.tight\_layout()

此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。

到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!

Python-openpyxl教程6 - 图表之面积图和条形图

openpyxl可以使用以下图表:

图表至少由一系列一个或多个数据点组成。系列本身对单元格范围的引用组成。

默认情况下图表的左上角固定在单元格E15上,大小为15x7.5厘米(大约5列乘14行 )。可以通过设置图标的anchor,width和height属性来更改此设置。实际大小将取决于操作系统和设备。

其他锚点是可能的。请参考 openpyxl.drawing.spreadsheet_drawing 来获取更多信息。

面积图类似于折线图,不同之处在于填充了绘制线下方的区域。通过将分组设置为"标准","堆叠"或"百分比堆叠",可以使用不同的变体。默认为"标准"。

您还可以创建三维面积图

这将生成一个简单的三维面积图,其中第三个轴可用于替换图例:

在条形图中,值被绘制为水平条或垂直列

这将产生四个图表,说明各种可能性。

您还可以创建三维条形图

这将生成一个简单的三维条形图。

note:有兴趣的小伙伴可以帮忙看下在 office下的现象

(责任编辑:IT教学网)

更多

推荐安全产品文章