Python怎么画图表(python绘制)
用Python画图
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
??它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt?导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊,?原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price")? #?绘制第一个图比特币价格
ax1.set_ylabel('BTC price') #?加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()#?在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")??#?绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
python绘图中四个绘图技巧
pre{overflow-x: auto}
技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import?seaborn?as?sns?#?v0.11.2?? import?matplotlib.pyplot?as?plt?#?v3.4.2?? sns.set(style='darkgrid',?context='talk',?palette='rainbow')df?=?sns.load\_dataset('tips')?? df.head()
技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig,?ax?=?plt.subplots(nrows=1,?ncols=2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? sns.boxplot(data=df,?x='tip',?ax=ax[1]);
在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
? 例如,我们可以像这样为每个子图添加标题:
fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? sns.histplot(data=df,?x='tip',?ax=ax[0])?? ax[0].set\_title("Histogram")?? sns.boxplot(data=df,?x='tip',?ax=ax[1])?? ax[1].set\_title("Boxplot");
在循环中将所有数值变量用同一组图表示:
numerical?=?df.select\_dtypes('number').columnsfor?col?in?numerical:?? ?fig,?ax?=?plt.subplots(1,?2,?figsize=(10,4))?? ?sns.histplot(data=df,?x=col,?ax=ax[0])?? ?sns.boxplot(data=df,?x=col,?ax=ax[1]); 技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(), 末尾没有 s
? 语法与之前略有不同:
plt.figure(figsize=(10,4))?? ax1?=?plt.subplot(1,2,1)?? sns.histplot(data=df,?x='tip',?ax=ax1)?? ax2?=?plt.subplot(1,2,2)?? sns.boxplot(data=df,?x='tip',?ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)
我们同样能定制子图形。例如加个 title
plt.figure(figsize=(14,4))?? for?i,?col?in?enumerate(numerical):?? ?ax?=?plt.subplot(1,?len(numerical),?i+1)?? ?sns.boxplot(data=df,?x=col,?ax=ax)??? ?ax.set\_title(f"Boxplot?of?{col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical?=?df.select\_dtypes('category').columnsplt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)
顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用 plt.tight_layout 很方便
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8,?8))?? for?i,?col?in?enumerate(categorical):?? ?ax?=?plt.subplot(2,?2,?i+1)?? ?sns.countplot(data=df,?x=col,?ax=ax)??? plt.suptitle('Category?counts?for?all?categorical?variables')?? plt.tight\_layout()
此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
到此这篇关于python绘图 四个绘图技巧的文章就介绍到这了,希望大家以后多多支持!
Python-openpyxl教程6 - 图表之面积图和条形图
openpyxl可以使用以下图表:
图表至少由一系列一个或多个数据点组成。系列本身对单元格范围的引用组成。
默认情况下图表的左上角固定在单元格E15上,大小为15x7.5厘米(大约5列乘14行 )。可以通过设置图标的anchor,width和height属性来更改此设置。实际大小将取决于操作系统和设备。
其他锚点是可能的。请参考 openpyxl.drawing.spreadsheet_drawing 来获取更多信息。
面积图类似于折线图,不同之处在于填充了绘制线下方的区域。通过将分组设置为"标准","堆叠"或"百分比堆叠",可以使用不同的变体。默认为"标准"。
您还可以创建三维面积图
这将生成一个简单的三维面积图,其中第三个轴可用于替换图例:
在条形图中,值被绘制为水平条或垂直列
这将产生四个图表,说明各种可能性。
您还可以创建三维条形图
这将生成一个简单的三维条形图。
note:有兴趣的小伙伴可以帮忙看下在 office下的现象