AI开发的基本流程,如何开发ai

http://www.itjxue.com  2023-01-09 07:29  来源:未知  点击次数: 

干货分享 | AI研发工程师成长指南

作者 | Japson

来源 | 木东居士

0x00 前言

首先,《AI研发工程师成长指南》这个题目其实有些标题党了,准确地来说,本文内容应该是:“要想成为一名AI研发工程师,需要具备哪些技能”。

其次,本文对“AI研发工程师”这个title的定义,也并不是大家第一印象中的“算法工程师”、“数据科学家”。

再次,本文实际上作者结合现阶段行业发展、技术趋势以及自身工作性质做出的关于自身定位、职业技能、发展方向的思考。就像魔兽世界中的“职业攻略”,当我们在游戏中新建一个角色时,会先去了解这个职业的特点、天赋、技能树等信息,这样才会在“练级”的过程中少走些弯路。

最后,作者不是从一个很高的角度来对整个成长体系进行一个全面地阐述。而是站在道路的地点,不断摸索、不断前进、不断地调整自己的规划。因此本文不算是Best Practices,勉强算是Beta version,也希望能和大家不断交流,不断“发版”。

0x01 关于AI行业的思考

算法工程师的门槛

AI算法工程师年薪百万,应届毕业生年薪都有80w… 去年AI人才缺口就已经过百万,今年将达500w… 加入《XXX训练营》,XX天打造AI算法工程师…

在网络上充斥着各种类似上面那样的吸引眼球的文章标题,向你诉说着人工智能这一火的不能再火的领域美好的前景。仿佛我们看了两遍西瓜书、处理了MNIST和几朵鸢尾花、在自己的笔记本电脑上掉了几个包、得到了和教程上一样的结果,打了几场比赛,我们就已经拿到了AI领域的通行证、成功转型算法工程师、接大厂offer到手软了一样。

但实际,现在AI算法工程师的就业难度和准入门槛,远比我们想象的要高。

上一张网络上流传的“诸神黄昏”吧

可以说一点不夸张,现在很多大厂的校招算法岗,门槛就是海外名校/985工科院校的博士/硕士。除了拥有与学历匹配的学术能力以外,工程基础也要非常扎实。

有人说:“我看网上说,AI人才缺口非常大,我不去大厂不就行了?其他的公司要求没那么高吧?”

要求高不高我不知道,但是有一下两点:

绝大多数公司,是不需要雇佣AI算法工程师,即没有相关的业务需求,也负担不起算法团队的开销 2019年研究生报考人数290万人,预计招生70万人,其中计算机是热门专业,并且其中多数人的研究方向都是: 机器学习、数据挖掘之类。

此间竞争之激烈,诸如此类,虽未得其皮毛,也略见一斑。

AI企业痛点

当然,我说这些不是为了打击大家的信心,而是要指出现在行业内的痛点:AI工程化。

人工智能发展到现阶段,已经从实验室中的算法走向了工程化应用的阶段。但是算法落地并没有想象中的顺利,开始有越来越多诸如场景碎片化、应用成本高、实验室场景到实际应用场景效果差距较大等问题被暴露出来,而这些也成为当前阶段AI落地应用过程中新的痛点。

领域内高水平的paper都是公开发表的,除了少数的核心算法,人才济济的AI企业很难在算法性能上与友商拉开距离。那么AI企业想要商业化,想要创收,行业细分领域纵深成了决定成败的重要因素。需要下沉到业务领域,真刀真枪地进行拼杀。

在技术突破-商业化-产品化-工程化的阶段路线中,除了技术强,接下来还有很多路要走。谁能够更好更快地把算法从实验室中拿出来、卖出去;更好更快地将模型交付到业务场景,真正产生实际的价值,让客户满意,谁才能活得更久。

对于Scientist/Researcher而言,技术可以是一篇论文、一项 ImageNet 竞赛的冠军、也可以是一个重要数值(比如人脸识别准确率)的突破;但在商务侧来说,论文与冠军并不实用,如果技术无法融进安防、汽车、金融等行业,变成切切实实的产品,客户与合作伙伴就会拒绝买单。

对于AI企业来说,能否深入了解各行业的业务流程、业务规则、知识经验,进而将技术能力转化为业务解决方案创造价值,是发展的保障。

那么对于我们个人来说,应该如何发展呢?

0x02 AI研发

AI工程化

在《ML/DL科普向:从sklearn到tensorflow》一文中,我们谈到:

…… 那么对于我们这些非算法岗位的人来说,就没有办法涉及这一领域了么?其实我认为,对于企业来说,对于AI人才的需求分为两种:一种是学术界的牛人,发过大paper,有学术界比赛的结果的。公司需要他们去做算法研究,保持技术的领先性,在业内赢得口碑,这样才能在领域内保持头部领域。另一方面,人工智能早已不是一个概念了,企业需要把业务部门的算法落地的人,能够快速、稳定、高效地把实验室中的算法落实到生产环境中,解决实际问题的人。这就需要那些工程底子扎实、能够实打实地写代码,并且对算法模型理解深刻,能够快速将AI项目工程化、落地有产出的复合型人才。

还是基于这个观点,我决定将自身的技能树偏向企业需要的第二种人,也就是标题所提出的“AI研发工程师”。从实际的工程应用角度出来,focus人工智能项目落地的全流程以及解决方法,提高自己的AI工程化能力,以此作为个人核心竞争力。

AI项目全流程

网络上很多文章描述的所谓“机器学习项目全流程”,例如:数据收集处理、特征工程、训练模型、模型测试等等。这套流程对不对?对。但是远远不能满足企业的需求。

AI项目是团队创造出的具有商业价值的产品、服务以及交付产物。有着明确的需求、计划、周期、成本、交付流程以及验收标准。

以下以toB业务为例,对AI项目全流程进行简单梳理。toC业务大体如此,只是将客户替换成公司业务方即可。

初步需求沟通确认 该环节主要是由销售、售前完成。了解客户的基本情况,辅助客户根据自身业务挖掘AI应用场景。根据实际的业务需求、数据质量、硬件资源、期望产物来评估具体的方案以及建模思路。 POC阶段 Proof of Concept。在完成初步的评估之后,团队需要针对客户具体应用进行验证性测试,包括确定业务场景边界、业务评判指标、数据调研、资源需求、硬件/平台部署等。 场景方案确认 该环节需要售前、科学家、工程师等多角色与客户进行细致的场景沟通,明确需求、确定验收标准、评估工作量。因为该阶段结束后即输出SOW方案,因此需要反复沟通商榷。 建模开发阶段 4.1?项目详细规划 项目经理根据前期资料提供详细的方案设计、功能清单、资源投入、里程碑安排等内容,召开项目启动会,明确项目内容及分工职责。 4.2?数据处理 科学家在明确业务场景及需求后,对数据处理。其内容包括:数据质量检查、ETL处理(工作量较大)。还要对清洗后的数据进行探索性数据分析(Exploratory Data Analysis)以及可视化展示。EDA能够帮助我们在探索阶段初步了解数据的结构及特征,甚至发现一些模式和模型 4.3?特征工程 根据探索性分析得到的输出,结合对具体业务的理解,对分散的数据拼表并进行特征工程。 4.4?建模 形成初版建模,并对根据业务需求评估标准进行效果验证。后续需要不断进行模型迭代,直到满足需求,并做模型效果汇报。 4.5?系统研发 将训练好的模型发布服务、部署上线,开发外围对接系统以及部分定制化功能的开发。输出可运行的系统。 测试上线 对系统进行流程测试、性能测试,满足需求后对项目进行交付验收。 0x03 核心竞争力技能树

核心竞争力

通过对AI项目全流程的介绍,我们将目光瞄准到“建模开发阶段”的“系统研发”部分。虽然在上面只是一句话带过,但是其中的工作量和技术含量不小。

提起机器学习,尤其是深度学习,大家可能会对诸如Tensorflow,Pytorch,Caffee的工具耳熟能详。但其实在实际的机器学习的生命周期中,训练模型(上述工具主要解决的问题)只是整个机器学习生命周期的很小一部分。

数据如何准备?如何保证线上线下一致性?模型训练好了如何分布式部署?如何构建HA?需要批量处理还是实时处理?实时数据如何拼接?如何对模型服务进行监控、告警?做成PaaS还是MLaaS?

机器学习具有天然的Pipline特性,在企业需求中,大大小小的业务场景有众多的模型,这些模型如何进行打包、处理、发布?离线训练、批量预估、实施预估、自学习等任务类型交错,不同建模工具Sklearn、Tensorflow,Pytorch构造的模型如何进行整合?开发框架Spark ML、Flink ML等如何协同、对接。生产环境如何进行扩展和伸缩?如何支持AB Test?

为了解决这些问题,新生的开源框架层出不穷:Google自研的对接Kubernets和Tensorflow的开源平台Kubeflow;Spark团队打造的ML pipelines辅助工具MLflow;雅虎提供的机器学习及服务平台BigML;阿里巴巴推出的分布式机器学习平台SQLflow等等。众多厂商纷纷发力,目的就是解决AI工程化应用的痛点。

这些工作都是需要一大批工程师去完成。因此,我认为了解AI工程化场景、解决方案;熟悉AI项目流程、机器学习Pipline;掌握AI系统研发、服务部署上线能力的工程师将会逐渐成为AI团队的中坚力量。

技能树

之前铺垫了那么多,既是梳理思路,也是为接下来的系列做一个开篇。按照我的初步计划,技能树大概包括(不分先后):

工程能力: 身为工程师首先要有工程能力,springboot/Netty/Thrift/等相关工具框架一定要掌握,微服务是机器学习平台的基础。 Spark SQL、Spark ML等更是大数据工程师用来做机器学习的利器,不但要掌握、更要从中抽象出流程和处理方法。 容器化: docker和k8s现在几乎是机器学习部署的必备技能,也是众多平台的基础。 是重要的前置技能。 机器学习深度学习: 不要求能够手推算法、模型优化,但要能够了解含义、上手使用,起码要成为一名优秀的调包侠(也便于吹水)。 开源框架: 其实我最近打算学习kubeflow,并输出学习笔记及总结实践。 本文其实是这个系列的开篇。 当然,后续还有有调整。 0xFF 后记

其实这种类型的文章,比单纯的学习笔记、技术文章难写多了。一方面,拖延症迫使我把难写的文章放在后面写,另一方面,强迫症又迫使我一定要在系列前出一个开篇。其实写到最后,总觉得核心部分还差点儿意思,没有搔到痒处,这是因为目前我还没有能力站在一个全局的角度对职业技术体系进行划分,只能梳理出目前的规划和看法。后续要还需和朋友们进行交流。

有些事情是一定要做的,纵观一些大牛前辈,无一不是在正确的时候做了正确的事。明确自己的目标,在前进的道路上不断微调自己的方向,这样才能在这个竞争激烈的职业中生存下去。

接下来会有系列的技术学习笔记,考虑到学习的连贯性,前期可能是一些基础的docker/k8s等系列,后期会研究一些开源框架。技术文章可能会枯燥乏味,知识点也缺乏新意,但是经过自己的整理和实践,再加上自身的理解感悟,相信会不断完善自己的知识体系。

人工智能软件怎么开发?

是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。

要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法。

最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家。

开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。

从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

小白入门 AI 产品经理之路

概述:21届毕业一直从事产品经理相关职位,先后从事的行业有云端视频编辑、跨境电商等行业,目前正在转型做云计算行业,别的不说跨度真的还挺大,而且其实中间真的没有什么很大的关系;但是兴趣使然,最终还是得选择一个自己最感兴趣的行业去进行深挖与提升自己,深入业务场景去进行需求的了解,与用户共情,是我目前的目标与方向,接下来会零零碎碎分享一些,自己对AI产品进阶的一些知识或者干货分享,欢迎各位大佬们批评指正,也欢迎跟我一样处于初期的小姐妹们跟我一起共同成长,互相交流~共勉之

第一篇:初识

quyc 2022/4/27

AI 平台知识概述

一、概念了解(what)

在说AI 平台之前,首先可以对AI进行了一个大致的解释,AI 即人工智能,是研究并模拟、延伸和扩展人脑复杂行为的一种技术科学,范围包括机器学习、计算机视觉等等;那么 AI 平台就是支持这种复杂科学研究的一种辅助工具,该工具可以进行智能化、体系化、自动化完成这一系列研究;

1)AI 平台主要面向的是模型开发者,围绕 AI 模型/算法的生命周期(数据收集、数据标注、模型构建、模型训练、模型优化、模型部署)提供的工具。

2)AI 平台是面向应用者的,围绕集成好的AI 服务进行部署应用,主要是进行应用的管理等相关操作的平台。

二、产品功能(How)

接下来将对 AI 平台的两种分类进行逐一的功能阐述

2.1 AI 开发平台

1)数据标注平台

面向进行模型训练的前置工作,包括数据导入、数据预处理、数据标注、数据增强等。这部分的数据工作与大数据的关联性比较强,有些标注平台甚至是大数据系统的组件。

对于AI 标注来说,更多是进行数据智能/自动化进行处理,故此有些厂商推出数据采样、数据拆分、数据缺失值处理(数据预处理)、自动标注(数据标注)、对图片类型数据去雾、增雾、对比度增强等智能算法(数据增强),正是这些功能支撑起了数据标注平台。

2)模型训练平台

给模型训练的内容配置算力、环境,这个是AI平台中比较常见的产品,由于模型训练对硬件资源的高消耗,通常会租用云计算资源来完成模型训练,所以很多模型训练平台是与云平台捆绑的,完成包括负载均衡、并行训练等工作。

4)模型部署平台

提供把模型从训练环境部署到推理环境(云端、边缘端等)的工具。这个功能相对简单,较少单独作为一个产品,一般是也是作为开发平台的一个功能模块。

一个例外是边缘/嵌入式环境部署平台(如百度EasyEdge),由于硬件适配比较繁琐,所以目前看到百度是做成一个相对独立的产品的。

5)模型推理平台

提供各式各样的模型接口,供用户直接调用,一般还提供包括模型调用管理、接口管理等功能,这种推理平台主要是以模型作为核心竞争力的。另一种推理平台则以算力作为竞争力,类似云平台,用户将模型部署在平台上可获得弹性扩缩容等能力。

2.2 ? AI 应用平台

AI支撑平台比起AI开发平台,更类似业务平台,比如内容审核、智能对话等。围绕的是一个核心算法,通过配置提升这个算法/能力的通用性。

通过下面一个例子进行详细解释:

横向是发布图片的业务流程,纵向是审核平台的功能,审核平台的核心问题就是图片分类,将符合审核政策规定的图片通过、违法的进行限制。

三、核心优势(Why)

AI 平台带来的优势可以从用户、平台角度进行思考:

用户:尽低层成本获取 AI 能力,提高工作效率,满足业务快速扩充的需要;

AI 平台:标准化的工作工具/流程,无需定制去解决,提高模型生产效率、降低工作成本,从而形成盈利;

但是就目前来说,平台的需求是大于用户的需求,这跟 AI 的发展历史有关,目前还暂处于初期阶段,AI 技术还不是很成熟,更多是对模型训练的一些需求,一种行业化解决方案标准化的过程;用户 AI 还持有观望态度(对提高ROI不确定等),所以引申出目前需要不断的加强对AI 能力的训练,更好的契合市场用户的需求是目前的必经之路,同时也需要不断的引导用户发现AI 能力的价值,进而提高AI 平台的价值。

四、市场状况(where)

一些AI开发平台产品的AI模型生命周期覆盖情况,可以看到大部分产品其实都是提供全生命周期的功能的,提供一站式解决方案。

竞品分析:

百度的功能架构是最舒服、逻辑性最好的。百度的AI开发平台包括BML和EasyDL两个,BML是全流程的开发平台,覆盖了AI模型全生命周期;EasyDL定位是零门槛开发,所以只支持到数据训练级别的开发。BML中相对独立的数据相关功能和边缘部署相关功能又都拆成组件/小平台,可以供用户单独调用,从而提高灵活性。

腾讯TI系列平台中,TI-ONE定位是一站式机器学习服务平台”,但暂时没有看到关于数据标注方面的功能,数据处理只提供相对简单的数据接入和数据预处理功能。预置模型相对来说也比较少,大部分是机器学习方面的模型,深度学习模型较少。

TI系列的其他两个平台TI-Matrix和Ti-EMS分别是“AI应用服务平台”和“无服务推理平台”,个人感觉都更偏向云服务一些,主要是服务调度、扩缩容等能力。

华为ModelArts也提供从数据标注到模型推理全流程的开发工具,其中“自动学习”的功能模块基本对标百度EasyDL,提供重训练级别的模型生成,但暂时没有按照需求层级进行产品拆分。

总结: 目前AI 平台根据用户不同的需求点各有所侧重,但是基本都进行了一站式平台训练能力的部署,主要在对数据、模型、部署三个方面发力;

1) 数据差异化:进一步与大数据平台吻合,提供数据采集、清洗、标注(自动、人工)等功能,解决用户数据方面的痛点。

2) 模型差异化:提供更多的强大预置算法进行模型训练,针对不同的业务场景去进行模型训练,针对不同的业务场景进行优化,其次需要充沛的算例资源,与云平台进行很好的衔接、协同处理。

3) 部署差异化:方便快捷、快速搭建、灵活运用成为部署的需要攻克的一大难点,也是非常重要的竞争优势,节省时间、人力成本,也方便进行运维;

(责任编辑:IT教学网)

更多

推荐安全产品文章