python的多线程和多进程(python多进程多线程区别)
python中多进程和多线程的区别
什么是线程、进程?
进程(process)与线程(thread)是操作系统的基本概念,它们比较抽象,不容易掌握。
关于这两者,最经典的一句话就是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,线程是程序中一个单一的顺序控制流程,进程内一个相对独立的、可调度的执行单元,是系统独立调度和分配CPU的基本单位指运行中的程序的调度单位,在单个程序中同时运行多个线程完成不同的工作,称为多线程。
进程与线程的区别是什么?
进程是资源分配的基本单位,所有与该进程有关的资源,都被记录在进程控制块PCB中,以表示该进程拥有这些资源或正在使用它们,另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间,当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
与进程相对应的,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源,线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成,寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由于线程比进程更小,基本上不拥有系统资源,所以对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显著提高系统资源的利用率和吞吐量。
因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。
python之多线程
进程的概念:以一个整体的形式暴露给操作系统管理,里面包含各种资源的调用。 对各种资源管理的集合就可以称为进程。
线程的概念:是操作系统能够进行运算调度的最小单位。本质上就是一串指令的集合。
进程和线程的区别:
1、线程共享内存空间,进程有独立的内存空间。
2、线程启动速度快,进程启动速度慢。注意:二者的运行速度是无法比较的。
3、线程是执行的指令集,进程是资源的集合
4、两个子进程之间数据不共享,完全独立。同一个进程下的线程共享同一份数据。
5、创建新的线程很简单,创建新的进程需要对他的父进程进行一次克隆。
6、一个线程可以操作(控制)同一进程里的其他线程,但是进程只能操作子进程
7、同一个进程的线程可以直接交流,两个进程想要通信,必须通过一个中间代理来实现。
8、对于线程的修改,可能会影响到其他线程的行为。但是对于父进程的修改不会影响到子进程。
第一个程序,使用循环来创建线程,但是这个程序中一共有51个线程,我们创建了50个线程,但是还有一个程序本身的线程,是主线程。这51个线程是并行的。注意:这个程序中是主线程启动了子线程。
相比上个程序,这个程序多了一步计算时间,但是我们观察结果会发现,程序显示的执行时间只有0.007秒,这是因为最后一个print函数它存在于主线程,而整个程序主线程和所有子线程是并行的,那么可想而知,在子线程还没有执行完毕的时候print函数就已经执行了,总的来说,这个时间只是执行了一个线程也就是主线程所用的时间。
接下来这个程序,吸取了上面这个程序的缺点,创建了一个列表,把所有的线程实例都存进去,然后使用一个for循环依次对线程实例调用join方法,这样就可以使得主线程等待所创建的所有子线程执行完毕才能往下走。 注意实验结果:和两个线程的结果都是两秒多一点
注意观察实验结果,并没有执行打印task has done,并且程序执行时间极其短。
这是因为在主线程启动子线程前把子线程设置为守护线程。
只要主线程执行完毕,不管子线程是否执行完毕,就结束。但是会等待非守护线程执行完毕
主线程退出,守护线程全部强制退出。皇帝死了,仆人也跟着殉葬
应用的场景 : socket-server
注意:gil只是为了减低程序开发复杂度。但是在2.几的版本上,需要加用户态的锁(gil的缺陷)而在3点几的版本上,加锁不加锁都一样。
下面这个程序是一个典型的生产者消费者模型。
生产者消费者模型是经典的在开发架构中使用的模型
运维中的集群就是生产者消费者模型,生活中很多都是
那么,多线程的使用场景是什么?
python中的多线程实质上是对上下文的不断切换,可以说是假的多线程。而我们知道,io操作不占用cpu,计算占用cpu,那么python的多线程适合io操作密集的任务,比如socket-server,那么cpu密集型的任务,python怎么处理?python可以折中的利用计算机的多核:启动八个进程,每个进程有一个线程。这样就可以利用多进程解决多核问题。
Python高阶(一) - 单线程、多线程和多进程的效率对比测试
多线程的目的 - “最大限度地利用CPU资源”。每个程序执行时都会产生一个进程,而每一个进程至少要有一个主线程。对于单CPU来说(没有开启超线程),在同一时间只能执行一个线程,所以如果想实现多任务,那么就只能每个进程或线程获得一个时间片,在某个时间片内,只能一个线程执行,然后按照某种策略换其他线程执行。由于时间片很短,这样给用户的感觉是同时有好多线程在执行。
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多线程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。
单线程、多线程和多进程的效率对比测试: github地址
资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率
| CPU密集型操作| IO密集型操作| 网络请求密集型操作
-- | -- | --| --
线性操作| 69.73533328374 |17.76633326213 | 6.78833333651
多线程操作| 75.40299995740 |145.68366670609 | 1.93999997775
多进程操作| 13.97433336576 | 4.67833328247| 2.38333328565
仅个人观点,,欢迎留言~~~
python 多进程和多线程配合
由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()
regu_mate = '(?=a href=")(.*?)(?=")'
rpm_list = re.findall(regu_mate, rpm_info_str)
rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_list123456789101112131415161718192021
def multi_thread(rpm_url_list):
threads = [] # url = ''
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)
thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25
res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads: break1234567891011121314151617181920212223242526
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)123456789101112131415161718192021222324252627282930313233
def main():
url = ''
url_paas = ''
url_paas2 =''
start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718
代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。
小白都看懂了,Python 中的线程和进程精讲,建议收藏
目录
众所周知,CPU是计算机的核心,它承担了所有的计算任务。而操作系统是计算机的管理者,是一个大管家,它负责任务的调度,资源的分配和管理,统领整个计算机硬件。应用程序是具有某种功能的程序,程序运行与操作系统之上
在很早的时候计算机并没有线程这个概念,但是随着时代的发展,只用进程来处理程序出现很多的不足。如当一个进程堵塞时,整个程序会停止在堵塞处,并且如果频繁的切换进程,会浪费系统资源。所以线程出现了
线程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。一个进程可以拥有多个线程,而且属于同一个进程的多个线程间会共享该进行的资源
① 200 多本 Python 电子书(和经典的书籍)应该有
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且可靠的练手项目及源码)
④ Python基础入门、爬虫、网络开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
私信我01即可获取大量Python学习资源
进程时一个具有一定功能的程序在一个数据集上的一次动态执行过程。进程由程序,数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时需要的数据和工作区;程序控制块(PCB)包含程序的描述信息和控制信息,是进程存在的唯一标志
在Python中,通过两个标准库 thread 和 Threading 提供对线程的支持, threading 对 thread 进行了封装。 threading 模块中提供了 Thread , Lock , RLOCK , Condition 等组件
在Python中线程和进程的使用就是通过 Thread 这个类。这个类在我们的 thread 和 threading 模块中。我们一般通过 threading 导入
默认情况下,只要在解释器中,如果没有报错,则说明线程可用
守护模式:
现在我们程序代码中,有多个线程, 并且在这个几个线程中都会去 操作同一部分内容,那么如何实现这些数据的共享呢?
这时,可以使用 threading库里面的锁对象 Lock 去保护
Lock 对象的acquire方法 是申请锁
每个线程在操作共享数据对象之前,都应该申请获取操作权,也就是调用该共享数据对象对应的锁对象的acquire方法,如果线程A 执行了 acquire() 方法,别的线程B 已经申请到了这个锁, 并且还没有释放,那么 线程A的代码就在此处 等待 线程B 释放锁,不去执行后面的代码。
直到线程B 执行了锁的 release 方法释放了这个锁, 线程A 才可以获取这个锁,就可以执行下面的代码了
如:
到在使用多线程时,如果数据出现和自己预期不符的问题,就可以考虑是否是共享的数据被调用覆盖的问题
使用 threading 库里面的锁对象 Lock 去保护
Python中的多进程是通过multiprocessing包来实现的,和多线程的threading.Thread差不多,它可以利用multiprocessing.Process对象来创建一个进程对象。这个进程对象的方法和线程对象的方法差不多也有start(), run(), join()等方法,其中有一个方法不同Thread线程对象中的守护线程方法是setDeamon,而Process进程对象的守护进程是通过设置daemon属性来完成的
守护模式:
其使用方法和线程的那个 Lock 使用方法类似
Manager的作用是提供多进程共享的全局变量,Manager()方法会返回一个对象,该对象控制着一个服务进程,该进程中保存的对象运行其他进程使用代理进行操作
语法:
线程池的基类是 concurrent.futures 模块中的 Executor , Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor ,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池
如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定
Exectuor 提供了如下常用方法:
程序将 task 函数提交(submit)给线程池后,submit 方法会返回一个 Future 对象,Future 类主要用于获取线程任务函数的返回值。由于线程任务会在新线程中以异步方式执行,因此,线程执行的函数相当于一个“将来完成”的任务,所以 Python 使用 Future 来代表
Future 提供了如下方法:
使用线程池来执行线程任务的步骤如下:
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
也可以低于 CPU 核心数
使用线程池来执行线程任务的步骤如下:
关于进程的开启代码一定要放在 if __name__ == '__main__': 代码之下,不能放到函数中或其他地方
开启进程的技巧
开启进程的数量最好低于最大 CPU 核心数