dbEST数据库,Dbs数据库

http://www.itjxue.com  2023-01-13 16:25  来源:未知  点击次数: 

如何利用在线资源研究癌症基因组

如何利用在线资源研究癌症基因组

基因组包含了构成和维持一个生活有机体所必备的基本信息,由细胞内进行的多种分子生物学反应将这些信息转化为真正的生命现象。基因组的一部分编码蛋白质和RNA,其它部分调控这些大分子的表达。表达的蛋白质及RNA折叠成高度专一的三维结构,在体内的特定位置上实现其功能。这些过程的大量细节都是在分子生物学研究的实验室里揭示出来的,所形成的大量数据,存储于数据库中。生物信息学试图从这些数据中提取新的生物学信息和知识,是一门深深植根于全面深入的实验事实和数据的理论生物学。从目前生物信息学的研究情况来看,国际上公认的生物信息学的研究内容,大致包括以下几个方面: 生物信息的收集、存储、管理与提供。包括建立国际基本生物信息库和生物信息传输的国际联网系统;建立生物信息数据质量的评估与检测系统;生物信息的在线服务;生物信息可视化和专家系统。 基因组序列信息的提取和分析。包括基因的发现与鉴定,如利用国际EST 数据库 (dbEST) 和各自实验室测定的相应数据,经过大规模 并行计算发现新基因和新SNPs以及各种功能位点;基因组中非编码区的信息结构分析,提出理论模型,阐明该区域的重要生物学功能;进行模式生物完整基因组的信息结构分析和比较研究;利用生物信息研究遗传密码起源、基因组结构的演化、基因组空间结构与DNA折叠的关系以及基因组信息与生物进化关系等生物学的重大问题。 功能基因组相关信息分析。包括与大规模基因表达谱分析相关的算法、软件研究,基因表达调控网络的研究;与基因组信息相关的核酸、蛋白质空间结构的预测和模拟,以及蛋白质功能预测的研究。 生物大分子结构模拟和药物设计。包括RNA(核糖核酸)的结构模拟和反义RNA的分子设计;蛋白质空间结构模拟和分子设计;具有不同功能域的复合蛋白质以及连接肽的设计;生物活性分子的电子结构计算和设计;纳米生物材料的模拟与设计;基于酶和功能蛋白质结构、细胞表面受体结构的药物设计;基于DNA结构的药物设计等。 生物信息分析的技术与方法研究。包括发展有效的能支持大尺度作图与测序需要的软件、数据库以及若干数据库工具,诸如电子网络等远程通讯工具;改进现有的理论分析方法,如统计方法、模式识别方法、隐马尔科夫过程方法、分维方法、神经网络方法、复杂性分析方法、密码学方法、多序列比较方法等;创建一切适用于基因组信息分析的新方法、新技术。包括引入复杂系统分析技术、信息系统分析技术等;建立严格的多序列比较方法;发展与应用密码学方法以及其他算法和分析技术,用于解释基因组的信息,探索DNA序列及其空间结构信息的新表征;发展研究基因组完整信息结构和信息网络的研究方法等;发展生物大分子空间结构模拟、电子结构模拟和药物设计的新方法与新技术。 应用与发展研究。汇集与疾病相关的人类基因信息,发展患者样品序列信息检测技术和基于序列信息选择表达载体、引物的技术,建立与动植物良种繁育相关的数据库以及与大分子设计和药物设计相关的数据库。 总的来说近期生物信息学将在以下几方面迅速发展:大规模基因组测序中的信息分析;新基因和新SNPs(单核苷酸多态性)的发现与鉴定;完整的比较基因组研究;大规模基因功能表达谱的分析;生物大分子的结构模拟与药物设计。而其长远任务是非编码区信息结构分析和遗传密码起源与生物进化的研究。读懂人类基因组,发现人类遗传语言的根本规律,从而阐明若干生物学中的重大自然哲学问题,像生命的起源与进化等。 以下就若干方面再做一定的介绍 1. 数据库 据保守估计,目前世界上平均每一分钟就有一个序列增加到核酸序列数据库中,能够从飞速增长的序列数据更高效的提取信息,建立生物信息中心,通过互联网实现全球范围内的信息共享成为必然。欧美各国及日本等西方国家相继成立了生物信息资源和研究中心,如美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI)、位于英国的欧洲生物信息研究所(European Bioinformatics Institute,EBI)、位于瑞士日内瓦的蛋白质专家分析系统(The Expert Protein Analysis System,ExPaSy)、日本国立遗传学研究院(National Institute Genetics,简称NIG)等。以西欧各国为主的欧洲分子生物学网络组织European Molecular Biology network (EMBnet),成立于1988年,是目前国际上最大的分子生物信息研究、开发和服务机构。它把欧洲乃至世界各国的生物信息中心联系在一起,实现信息共享,并合作进行开发、研究、培训。 2. 基因组 在后基因组时代,生物信息学家不仅有大量的序列和基因而且有越来越多的完整基因组。有了这些资料人们就能对若干重大生物学问题进行分

基因克隆的策略有哪些

利用计算机来协助克隆的第一步是必须获得感兴趣的EST,在dbEST数据库中找出EST的最有途径是寻找同源序列,标准:长度≥100bp,同源性50%以上、85%以下。可通过数个万维网界而使用BLAST检索程度实现,其中最常用的如NCBI(National Center for Biotechnology Information)的GenBank、意大利Tigem的ESTmachine(包括EST提取者和EST组装机器)、THC(Tentative Human Consensus Sequences)数据库、ESTBlast检索程序——通过英国人类基因组作图项目资源中心(Human Genome Mapping Project Resource Center,HGMP—RC)服务器上访问。然后将检出序列组装为重叠群(contig),以此重叠群为被检序列,重复进行BLAST检索与序列组装,延伸重叠样系列,重复以上过程,直到没有更多的重叠EST检出或者说重叠群序列不能继续延伸,有时可获得全长的基因编码序列。获得这些EST序列数据后,再与GeneBank核酸数据库进行相似性检测,假如凤有精确匹配基因,将EST序列数据据EST六种阅读框翻译成蛋白质,接着与蛋白质序列数据库进行比较分析。基因分析的结果大致有三种:第一是已知基因,是研究对象为人类已鉴定和了解的基因;第二是以前未经鉴定的新基因;第三是未知基因,这部分基因之间无同种或异种基因的匹配。新基因和未知基因将进一步用于生物学研究。

蛋白质组组学研究的基本策略是什么?

蛋白质组 蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,并且,同一蛋白可能以许多形式进行翻译后的修饰. 故一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域. 蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制. 作为一门科学,蛋白质组研究并非从零开始,它是已有20多年历史的蛋白质(多肽)谱和基因产物图谱技术的一种延伸. 多肽图谱依靠双向电泳(Two-dimensional gel electrophoresis, 2-DE)和进一步的图象分析;而基因产物图谱依靠多种分离后的分析,如质谱技术、氨基酸组分分析等.

[编辑本段]蛋白质组学的研究内容

主要有两方面,一是结构蛋白质组学,二是功能蛋白质组学。其研究前沿大致分为三个方面:

① 针对有关基因组或转录组数据库的生物体或组织细胞,建立其蛋白质组或亚蛋白质组及其蛋白质组连锁群,即组成性蛋白质组学。

② 以重要生命过程或人类重大疾病为对象,进行重要生理病理体系或过程的局部蛋白质组或比较蛋白质组学。

③ 通过多种先进技术研究蛋白质之间的相互作用,绘制某个体系的蛋白,即相互作用蛋白质组学,又称为“细胞图谱”蛋白质组学。

此外,随着蛋白质组学研究的深入,又出现了一些新的研究方向,如亚细胞蛋白质组学、定量蛋白质组学等。

[编辑本段]蛋白质组学研究中的主要技术

1 双向凝胶电泳技术(2-DE)

双向凝胶电泳技术与质谱技术是目前应用最为广泛的研究蛋白质组学的方法。双向凝胶电泳技术利用蛋白质的等电点和分子量差别将各种蛋白质区分开来。虽然二维凝胶电泳难以辨别低丰度蛋白,对操作要求也较高,但其通量高、分辨率和重复性好以及可与质谱联用的特点,使其成为目前最流行、可靠的蛋白质组研究手段。双向凝胶电泳技术及质谱基础的蛋白质组学研究程序为样品制备→等电聚焦→聚丙烯酰胺凝胶电泳→凝胶染色→挖取感兴趣的蛋白质点→胶内酶切→质谱分析确定肽指纹图谱或部分氨基酸序列→利用数据库确定蛋白。蛋白质组研究要求有高分辨率的蛋白质分离及准确、灵敏的质谱鉴定技术。凝胶电泳中蛋白质的着色不仅影响蛋白质分离的分辨率,同时也影响后续的质谱鉴定。蛋白质的染色可分为有机试剂染色、银染、荧光染色及同位素显色四类。

Unlu 等提出了一种荧光差异显示双向电泳(F-2D-DIGE)的定量蛋白质组学分析方法。差异凝胶电泳(DIGE)是对2-DE 在技术上的改进,结合了多重荧光分析的方法,在同一块胶上共同分离多个分别由不同荧光标记的样品,并第一次引入了内标的概念。两种样品中的蛋白质采用不同的荧光标记后混合,进行2-DE,用来检测蛋白质在两种样品中表达情况,极大地提高了结果的准确性、可靠性和可重复性。在DIGE技术中,每个蛋白点都有它自己的内标,并且软件可全自动根据每个蛋白点的内标对其表达量进行校准,保证所检测到的蛋白丰度变化是真实的。DIGE 技术已经在各种样品中得到应用。

2 高效液相色谱技术(HPLC)

尽管二维凝胶电泳(2-DE)是目前常用的对全蛋白组的分析方法,但其存在分离能力有限、存在歧视效应、操作程序复杂等缺陷。对于分析动态范围大、低丰度以及疏水性蛋白质的研究往往很难得到满意的结果。Chong 等使用HPLC/ 质谱比较分析恶性肿瘤前和癌症两种蛋白质差异表达。利用HPLC 分离蛋白质,并用MALDI-TOF-MS 鉴定收集的组分,从而在两种细胞中的差异表达中对蛋白质进行定量分析。多维液相色谱作为一种新型分离技术,不存在相对分子质量和等电点的限制,通过不同模式的组合,消除了二维凝胶电泳的歧视效应,具有峰容量高、便于自动化等特点。二维离子交换- 反相色谱(2D-IEC-RPLC)是蛋白质组学研究中最常用的多维液相色谱分离系统。

3 表面增强激光解吸离子化飞行时间质谱(SEL-DI)技术

表面增强激光解吸离子化飞行时间质谱技术于2002 年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI 技术是目前蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表面经过特殊修饰的芯片上,既可比较两个样品之间的差异蛋白,也可获得样品的蛋白质总览。因此,在应用方面具有显著优势。SELDI 技术分析的样品不需用液相色谱或气相色谱预先纯化,因此可用于分析复杂的生物样品。SELDI 技术可以分析疏水性蛋白质,PI 过高或过低的蛋白质以及低分子质量的蛋白质( 25 000) ,还可以发现在未经处理的样品中许多被掩盖的低浓度蛋白质,增加发现生物标志物的机会。SELDI 技术只需少量样品,在较短时间内就可以得到结果,且试验重复性好,适合临床诊断及大规模筛选与疾病相关的生物标志物,特别是它可直接检测不经处理的尿液、血液、脑脊液、关节腔滑液、支气管洗出液、细胞裂解液和各种分泌物等, 从而可检测到样品中目标蛋白质的分子量、PI、糖基化位点、磷酸化位点等参数。

4 同位素标记亲和标签(ICAT)技术

同位素亲和标签技术是近年发展起来的一种用于蛋白质分离分析技术,此技术目前是蛋白质组研究技术中的核心技术之一。该技术用具有不同质量的同位素亲和标签( ICATs) 标记处于不同状态下的细胞中的半胱氨酸,利用串联质谱技术,对混合的样品进行质谱分析。来自两个样品中的同一类蛋白质会形成易于辨识比较的两个不同的峰形,能非常准确的比较出两份样品蛋白质表达水平的不同。ICAT 的好处在于它可以对混合样品直接测试;能够快速定性和定量鉴定低丰度蛋白质,尤其是膜蛋白等疏水性蛋白等;还可以快速找出重要功能蛋白质。

由于采用了一种全新的ICAT 试剂,同时结合了液相色谱和串联质谱,因此不但明显弥补了双向电泳技术的不足,同时还使高通量、自动化蛋白质组分析更趋简单、准确和快速,代表着蛋白质组分析技术的主要发展方向。针对磷酸化蛋白分析以及与固相技术相结合ICAT 技术本身又取得了许多有意义的进展,已形成ICA T 系列技术。用具有不同质量的同位素亲和标签( ICATs) 标记处于不同状态下的细胞中的半胱氨酸,利用串联质谱技术,可对混合的样品进行质谱分析。

5 生物信息学

近年来,生物信息学在生命科学研究中起着越来越重要的作用。利用生物信息学对蛋白质组的各种数据进行处理和分析,也是蛋白质组研究的重要内容。生物信息学是蛋白质组学研究中不可缺少的一部分。生物信息学的发展,已不仅是单纯的对基因组、蛋白质组数据的分析,而且可以对已知的或新的基因产物进行全面分析。在蛋白质组数据库中储存了有机体、组织或细胞所表达的全部蛋白质信息,通过用鼠标点击双向凝胶电泳图谱上的蛋白质点就可获得

如蛋白质鉴定结果、蛋白质的亚细胞定位、蛋白质在不同条件下的表达水平等信息。目前应用最普遍的数据库是NRDB 和dbEST 数据库。NRDB 由SWISS2PROT 和GENPETP 等几个数据库组成,dbEST是由美国国家生物技术信息中心(NCBI)和 欧洲生物信息学研究所(EBI)共同编辑的核酸数据库;计算机分析软件主要有蛋白质双向电泳图谱分析软件、蛋白质鉴定软件、蛋白质结构和功能预测软件等。

dbEST是什么意思/

乖乖 db就是database

表达序列标签数据库

The Expressed Sequence Tags database contains sequence data and other information on "single-pass" cDNA sequences (Expressed Sequence Tags) from a number of organisms.

生物学 EST是什么啊 ?详细的介绍一下

EST是Expressed Sequence Tag的缩写,意思是表达序列标签,指从一个随机选择的cDNA?克隆,进行5’端和3’端单一次测序挑选出来获得的短的cDNA 部分序列。

EST是从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。

EST 来源于一定环境下一个组织总mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。

扩展资料

EST的作用表现在:

1、 用于构建基因组的遗传图谱与物理图谱;

2、作为探针用于放射性杂交;

3、 用于定位克隆;

4、借以寻找新的基因;

5、作为分子标记;

6、 用于研究生物群体多态性。

参考资料来源:百度百科-EST

(责任编辑:IT教学网)

更多

推荐Windows服务器文章